Hikspoors Jill P J M, Peeters Mathijs M J P, Mekonen Hayelom K, Kruepunga Nutmethee, Mommen Greet M C, Cornillie Pieter, Köhler S Eleonore, Lamers Wouter H
Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
J Anat. 2017 Nov;231(5):718-735. doi: 10.1111/joa.12671. Epub 2017 Aug 8.
Differentiation of endodermal cells into hepatoblasts is well studied, but the remodeling of the vitelline and umbilical veins during liver development is less well understood. We compared human embryos between 3 and 10 weeks of development with pig and mouse embryos at comparable stages, and used Amira 3D reconstruction and Cinema 4D remodeling software for visualization. The vitelline and umbilical veins enter the systemic venous sinus on each side via a common entrance, the hepatocardiac channel. During expansion into the transverse septum at Carnegie Stage (CS)12 the liver bud develops as two dorsolateral lobes or 'wings' and a single ventromedial lobe, with the liver hilum at the intersection of these lobes. The dorsolateral lobes each engulf a vitelline vein during CS13 and the ventromedial lobe both umbilical veins during CS14, but both venous systems remain temporarily identifiable inside the liver. The dominance of the left-sided umbilical vein and the rightward repositioning of the sinuatrial junction cause de novo development of left-to-right shunts between the left umbilical vein in the liver hilum and the right hepatocardiac channel (venous duct) and the right vitelline vein (portal sinus), respectively. Once these shunts have formed, portal branches develop from the intrahepatic portions of the portal vein on the right side and the umbilical vein on the left side. The gall bladder is a reliable marker for this hepatic vascular midline. We found no evidence for large-scale fragmentation of embryonic veins as claimed by the 'vestigial' theory. Instead and in agreement with the 'lineage' theory, the vitelline and umbilical veins remained temporally identifiable inside the liver after being engulfed by hepatoblasts. In agreement with the 'hemodynamic' theory, the left-right shunts develop de novo.
内胚层细胞向肝母细胞的分化已得到充分研究,但肝脏发育过程中卵黄静脉和脐静脉的重塑却鲜为人知。我们将发育3至10周的人类胚胎与处于可比阶段的猪和小鼠胚胎进行了比较,并使用Amira 3D重建和Cinema 4D重塑软件进行可视化。卵黄静脉和脐静脉通过一个共同入口——肝心通道,在两侧进入体静脉窦。在卡内基阶段(CS)12扩展进入横隔时,肝芽发育为两个背外侧叶或“翼”以及一个单一的腹内侧叶,肝门位于这些叶的交汇处。在CS13期间,每个背外侧叶吞噬一条卵黄静脉,在CS14期间,腹内侧叶吞噬两条脐静脉,但两个静脉系统在肝脏内部仍可暂时识别。左侧脐静脉的优势以及窦房结的右移分别导致肝门处的左脐静脉与右肝心通道(静脉导管)以及右卵黄静脉(门静脉窦)之间从头开始形成左向右分流。一旦这些分流形成,门静脉分支从右侧门静脉的肝内部分和左侧的脐静脉发育而来。胆囊是这条肝血管中线的可靠标志。我们没有找到证据支持“退化”理论所声称的胚胎静脉大规模碎片化。相反,与“谱系”理论一致,卵黄静脉和脐静脉在被肝母细胞吞噬后,在肝脏内部仍可暂时识别。与“血流动力学”理论一致,左右分流是从头开始形成的。