Suppr超能文献

基于MRI衍生特征的肌萎缩侧索硬化症分析的机器学习诊断模型

Machine learning diagnostic model for amyotrophic lateral sclerosis analysis using MRI-derived features.

作者信息

Gil Chong Pablo, Mazon Miguel, Cerdá-Alberich Leonor, Beser Robles Maria, Carot José Miguel, Vázquez-Costa Juan Francisco, Martí-Bonmatí Luis

机构信息

Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.

Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.

出版信息

Neuroradiology. 2025 Aug 8. doi: 10.1007/s00234-025-03732-9.

Abstract

PURPOSE

Amyotrophic Lateral Sclerosis is a devastating motor neuron disease characterized by its diagnostic difficulty. Currently, no reliable biomarkers exist in the diagnosis process. In this scenario, our purpose is the application of machine learning algorithms to imaging MRI-derived variables for the development of diagnostic models that facilitate and shorten the process.

METHODS

A dataset of 211 patients (114 ALS, 45 mimic, 22 genetic carriers and 30 control) with MRI-derived features of volumetry, cortical thickness and local iron (via T2* mapping, and visual assessment of susceptibility imaging). A binary classification task approach has been taken to classify patients with and without ALS. A sequential modeling methodology, understood from an iterative improvement perspective, has been followed, analyzing each group's performance separately to adequately improve modelling. Feature filtering techniques, dimensionality reduction techniques (PCA, kernel PCA), oversampling techniques (SMOTE, ADASYN) and classification techniques (logistic regression, LASSO, Ridge, ElasticNet, Support Vector Classifier, K-neighbors, random forest) were included. Three subsets of available data have been used for each proposed architecture: a subset containing automatic retrieval MRI-derived data, a subset containing the variables from the visual analysis of the susceptibility imaging and a subset containing all features.

RESULTS

The best results have been attained with all the available data through a voting classifier composed of five different classifiers: accuracy = 0.896, AUC = 0.929, sensitivity = 0.886, specificity = 0.929.

CONCLUSION

These results confirm the potential of ML techniques applied to imaging variables of volumetry, cortical thickness, and local iron for the development of diagnostic model as a clinical tool for decision-making support.

摘要

目的

肌萎缩侧索硬化症是一种毁灭性的运动神经元疾病,其特点是诊断困难。目前,在诊断过程中不存在可靠的生物标志物。在这种情况下,我们的目的是将机器学习算法应用于磁共振成像(MRI)衍生的变量,以开发有助于简化和缩短诊断过程的诊断模型。

方法

收集了211例患者的数据集(114例肌萎缩侧索硬化症患者、45例症状模拟患者、22例基因携带者和30例对照者),这些患者具有MRI衍生的体积测量、皮质厚度和局部铁含量特征(通过T2*映射以及磁化率成像的视觉评估)。采用二元分类任务方法对患有和未患有肌萎缩侧索硬化症的患者进行分类。遵循了一种从迭代改进角度理解的顺序建模方法,分别分析每组的性能以充分改进建模。纳入了特征过滤技术、降维技术(主成分分析、核主成分分析)、过采样技术(合成少数过采样技术、自适应合成采样方法)和分类技术(逻辑回归、套索回归、岭回归、弹性网络、支持向量分类器、K近邻、随机森林)。对于每个提出的架构,使用了可用数据的三个子集:一个包含自动检索的MRI衍生数据的子集、一个包含磁化率成像视觉分析变量的子集以及一个包含所有特征的子集。

结果

通过由五个不同分类器组成的投票分类器,利用所有可用数据取得了最佳结果:准确率 = 0.896,曲线下面积(AUC)= 0.929,灵敏度 = 0.886,特异性 = 0.929。

结论

这些结果证实了将机器学习技术应用于体积测量、皮质厚度和局部铁含量的成像变量以开发诊断模型作为临床决策支持工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验