Guo Zhihui, Kwon Young H, Lee Kyungmoo, Wang Kai, Wahle Andreas, Alward Wallace L M, Fingert John H, Bettis Daniel I, Johnson Chris A, Garvin Mona K, Sonka Milan, Abràmoff Michael D
Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States.
Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.
Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):3975-3985. doi: 10.1167/iovs.17-21832.
A pilot study showed that prediction of individual Humphrey 24-2 visual field (HVF 24-2) sensitivity thresholds from optical coherence tomography (OCT) image analysis is possible. We evaluate performance of an improved approach as well as 3 other predictive algorithms on a new, fully independent set of glaucoma subjects.
Subjects underwent HVF 24-2 and 9-field OCT (Heidelberg Spectralis) testing. Nerve fiber (NFL), and ganglion cell and inner plexiform (GCL+IPL) layers were cosegmented and partitioned into 52 sectors matching HVF 24-2 test locations. The Wilcoxon rank sum test was applied to test correlation R, root mean square error (RMSE), and limits of agreement (LoA) between actual and predicted thresholds for four prediction models. The training data consisted of the 9-field OCT and HVF 24-2 thresholds of 111 glaucoma patients from our pilot study.
We studied 112 subjects (112 eyes) with early, moderate, or advanced primary and secondary open angle glaucoma. Subjects with less than 9 scans (15/112) or insufficient quality segmentations (11/97) were excluded. Retinal ganglion cell axonal complex (RGC-AC) optimized had superior average R = 0.74 (95% confidence interval [CI], 0.67-0.76) and RMSE = 5.42 (95% CI, 5.1-5.7) dB, which was significantly better (P < 0.05/3) than the other three models: Naïve (R = 0.49; 95% CI, 0.44-0.54; RMSE = 7.24 dB; 95% CI, 6.6-7.8 dB), Garway-Heath (R = 0.66; 95% CI, 0.60-0.68; RMSE = 6.07 dB; 95% CI, 5.7-6.5 dB), and Donut (R = 0.67; 95% CI, 0.61-0.69; RMSE = 6.08 dB, 95% CI, 5.8-6.4 dB).
The proposed RGC-AC optimized predictive algorithm based on 9-field OCT image analysis and the RGC-AC concept is superior to previous methods and its performance is close to the reproducibility of HVF 24-2.
一项初步研究表明,通过光学相干断层扫描(OCT)图像分析预测个体 Humphrey 24-2 视野(HVF 24-2)敏感度阈值是可行的。我们在一组全新的、完全独立的青光眼患者中评估一种改进方法以及其他三种预测算法的性能。
受试者接受 HVF 24-2 和 9 视野 OCT(海德堡 Spectralis)检测。对神经纤维层(NFL)以及神经节细胞和内丛状层(GCL+IPL)进行联合分割,并划分为 52 个与 HVF 24-2 检测位置相匹配的扇区。应用 Wilcoxon 秩和检验来测试四种预测模型实际阈值与预测阈值之间的相关性 R、均方根误差(RMSE)以及一致性界限(LoA)。训练数据包括我们初步研究中 111 例青光眼患者的 9 视野 OCT 和 HVF 24-2 阈值。
我们研究了 112 例患有早期、中度或重度原发性和继发性开角型青光眼的受试者(112 只眼)。排除扫描次数少于 9 次的受试者(15/112)或分割质量不足的受试者(11/97)。优化后的视网膜神经节细胞轴突复合体(RGC-AC)平均相关性 R = 0.74(95%置信区间[CI],0.67 - 0.76),RMSE = 5.42(95%CI,5.1 - 5.7)dB,显著优于其他三种模型(P < 0.05/3):朴素模型(R = 0.49;95%CI,0.44 - 0.54;RMSE = 7.24 dB;95%CI,6.6 - 7.8 dB)、Garway-Heath 模型(R = 0.66;95%CI,0.60 - 0.68;RMSE = 6.07 dB;95%CI,5.7 - 6.5 dB)和甜甜圈模型(R = 0.67;95%CI,0.61 - 0.69;RMSE = 6.08 dB,95%CI,5.8 - 6.4 dB)。
基于 9 视野 OCT 图像分析和 RGC-AC 概念提出的优化 RGC-AC 预测算法优于先前方法,其性能接近 HVF 24-2 的可重复性。