Suppr超能文献

在纵向科学网络中检测和分析研究社群

Detecting and analyzing research communities in longitudinal scientific networks.

作者信息

Leone Sciabolazza Valerio, Vacca Raffaele, Kennelly Okraku Therese, McCarty Christopher

机构信息

Bureau of Economic Business and Research, University of Florida, Gainesville, Florida, United States of America.

Department of Sociology and Criminology & Law, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2017 Aug 10;12(8):e0182516. doi: 10.1371/journal.pone.0182516. eCollection 2017.

Abstract

A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

摘要

越来越多的证据表明,协作团队和社群往往能产出影响力最大的科学成果。本文提出了一种新方法,用于(1)识别纵向科学网络中的协作社群,以及(2)评估特定研究机构、服务或政策对这些社群之间跨学科合作的影响。首先,我们将社群检测算法应用于横断面科学合作网络,并随着时间推移分析所得子群体中不同类型的共同成员关系。该分析总结了大量纵向网络数据,以提取其成员随时间持续合作或共享合作者的研究社群集合。其次,我们构建跨社群互动网络,并估计指数随机图模型,以预测不同社群之间跨学科合作的形成。该方法应用于佛罗里达大学关于出版物和资助合作的纵向数据。结果表明,相似的机构隶属关系、空间 proximity、传递性效应以及对相同研究服务的使用,预示着研究社群之间更高程度的跨学科合作。我们的应用还说明了如何利用纵向数据中研究社群的识别以及跨社群网络形成的分析,来衡量研究型大学跨学科团队科学的发展,并评估其与研究政策、服务或机构的关联。 (注:原文中“spatial proximity”未翻译完整,可能需要根据具体语境补充完整的释义。)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a972/5552257/b4cb8184fb7f/pone.0182516.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验