Suppr超能文献

使用3D打印技术设计的具有可调特性的用于组织工程的计算晶格。

Computationally designed lattices with tuned properties for tissue engineering using 3D printing.

作者信息

Egan Paul F, Gonella Veronica C, Engensperger Max, Ferguson Stephen J, Shea Kristina

机构信息

Department of Health Sciences and Technology, Institute of Biomechanics, Swiss Federal Institute of Technology, Zurich, Switzerland.

Biomedical Computer Science and Mechatronics, UMIT The Health and Life Sciences University, Hall in Tirol, Austria.

出版信息

PLoS One. 2017 Aug 10;12(8):e0182902. doi: 10.1371/journal.pone.0182902. eCollection 2017.

Abstract

Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.

摘要

组织支架在促进组织生长的同时提供结构支撑,但由于存在多种性能权衡,其设计具有挑战性。在此,开发了一种计算方法,用于对具有八种不同拓扑结构的晶格结构支架进行建模,并评估与骨组织工程应用相关的性能。评估的性能包括孔隙率、孔径、表面积与体积比、弹性模量、剪切模量和渗透率。晶格拓扑结构是通过对基于梁的单元进行图案化生成的,具有梁直径和单元长度的设计参数。对每种拓扑结构进行了有限元模拟,并量化了弹性模量和剪切模量如何随孔隙率变化,以及渗透率如何随孔隙率的立方与表面积与体积比的平方的比值变化。将晶格与与孔隙率和孔径相关的可控性能进行了比较。相对比较表明,晶格拓扑结构导致了可实现性能的专业化。例如,立方体拓扑结构往往具有高弹性模量和低剪切模量,而八面体拓扑结构具有高剪切模量和表面积与体积比,但渗透率低。所开发的方法被用于分析当给定拓扑结构的梁直径改变时的性能权衡,并用于制作一个嵌入椎间融合器用于脊柱融合治疗的3D打印晶格的原型。研究结果为建模和理解旨在促进骨组织生长的基于梁的晶格之间的相对差异提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63fc/5552288/88d7e1850532/pone.0182902.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验