Suppr超能文献

使用正交阵列驱动的有限元分析和神经网络建模对3D打印骨支架进行计算优化。

Computational optimization of 3D printed bone scaffolds using orthogonal array-driven FEA and neural network modeling.

作者信息

Shetty Amulya, Fathima Aamirah, Anika B, Shetty Raviraj, Supriya J P, Hegde Adithya

机构信息

Father Muller Medical College, Mangalore, Karnataka, 575002, India.

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

出版信息

Sci Rep. 2025 Aug 20;15(1):30515. doi: 10.1038/s41598-025-15122-5.

Abstract

Today, orthopedic surgeons have been continuously focusing on bone tissue engineering for regenerating damaged bone through the use of biomimetic scaffolds and innovative materials. Hence, this study presents a comprehensive investigation into the optimization of PLA + 3D printed lattice scaffolds for bone tissue engineering applications, emphasizing the role of geometric configuration and processing parameters on mechanical performance. Three distinct lattice geometries such as Lidinoid, Diamond, and Gyroid were developed with varying wall thicknesses (1.0 mm, 1.5 mm, and 2.0 mm) and subjected to compressive loads of 3 kN, 6 kN, and 9 kN. A Taguchi L Orthogonal Array was employed to evaluate key mechanical responses, including displacement and strain. Among these configurations, the Gyroid lattice exhibited superior mechanical integrity, demonstrating the least displacement (0.36 mm) and strain (1.2 × 10⁻²) at 3 kN with 2.0 mm thickness, whereas the Lidinoid structure showed the highest deformability. A Back-propagation Artificial Neural Network (BPANN) model was developed to predict scaffold behavior with remarkable accuracy (R² = 0.9991 for displacement, R² = 0.9954 for strain), further Finite Element Analysis (FEA) was conducted to validate both experimental and predicted results. The novelty of this work lies in its integrative, multi-modal approach that synergizes experimental design, machine learning-based predictive modeling, and simulation. The focus of this study is to define a robust framework for optimizing scaffold architecture, with significant implications for enhancing mechanical strength and biological performance in bone healing applications.

摘要

如今,骨科医生一直持续关注骨组织工程,通过使用仿生支架和创新材料来再生受损骨骼。因此,本研究对用于骨组织工程应用的聚乳酸(PLA)+ 3D打印晶格支架的优化进行了全面调查,强调了几何构型和加工参数对力学性能的作用。开发了三种不同的晶格几何形状,如李氏类、菱形和螺旋状,具有不同的壁厚(1.0毫米、1.5毫米和2.0毫米),并承受3千牛、6千牛和9千牛的压缩载荷。采用田口L正交阵列来评估关键力学响应,包括位移和应变。在这些构型中,螺旋状晶格表现出卓越的力学完整性,在3千牛、壁厚为2.0毫米时位移最小(0.36毫米)、应变最小(1.2×10⁻²),而李氏类结构显示出最高的可变形性。开发了一个反向传播人工神经网络(BPANN)模型来预测支架行为,具有显著的准确性(位移的决定系数R² = 0.9991,应变为R² = 0.9954),还进行了有限元分析(FEA)以验证实验和预测结果。这项工作的新颖之处在于其综合的多模态方法,将实验设计、基于机器学习的预测建模和模拟协同起来。本研究的重点是定义一个用于优化支架结构的稳健框架,对增强骨愈合应用中的力学强度和生物学性能具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad1f/12368192/b462dc1d56de/41598_2025_15122_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验