Demchyshyn Stepan, Roemer Janina Melanie, Groiß Heiko, Heilbrunner Herwig, Ulbricht Christoph, Apaydin Dogukan, Böhm Anton, Rütt Uta, Bertram Florian, Hesser Günter, Scharber Markus Clark, Sariciftci Niyazi Serdar, Nickel Bert, Bauer Siegfried, Głowacki Eric Daniel, Kaltenbrunner Martin
Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
Department of Soft Matter Physics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
Sci Adv. 2017 Aug 4;3(8):e1700738. doi: 10.1126/sciadv.1700738. eCollection 2017 Aug.
Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.
控制半导体纳米晶体的尺寸和形状推动了纳米电子学和光子学的发展。量子受限、价格低廉、溶液衍生的金属卤化物钙钛矿提供了窄带、颜色纯净的发光体,作为下一代显示器和光电器件不可或缺的组成部分。我们使用纳米多孔硅和氧化铝薄膜作为模板,直接在与器件相关的结构中生长钙钛矿微晶,无需使用胶体稳定剂。我们发现,通过减小孔径,光致发光发射显著蓝移;通常发射红外光的材料变为可见的红色,发射绿色光的材料变为青色和蓝色。将钙钛矿纳米晶体限制在多孔氧化物薄膜内可大幅提高光致发光稳定性,因为这些模板恰好起到了封装作用。我们利用透射几何中的微聚焦高能X射线深度剖析来量化纳米多孔硅中模板诱导的钙钛矿晶体尺寸,验证了纳米多孔薄膜整个厚度范围内钙钛矿纳米晶体的生长情况。由生长在嵌入式纳米多孔氧化铝薄膜中的纳米晶钙钛矿制成的具有窄带、蓝移发射的低压电致发光二极管证实了我们对下一代光子器件的总体概念。