Warszawski Shira, Netzer Ravit, Tawfik Dan S, Fleishman Sarel J
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
J Mol Biol. 2014 Dec 12;426(24):4125-4138. doi: 10.1016/j.jmb.2014.10.002. Epub 2014 Oct 13.
To carry out their activities, biological macromolecules balance different physical traits, such as stability, interaction affinity, and selectivity. How such often opposing traits are encoded in a macromolecular system is critical to our understanding of evolutionary processes and ability to design new molecules with desired functions. We present a framework for constraining design simulations to balance different physical characteristics. Each trait is represented by the equilibrium fractional occupancy of the desired state relative to its alternatives, ranging from none to full occupancy, and the different traits are combined using Boolean operators to effect a "fuzzy"-logic language for encoding any combination of traits. In another paper, we presented a new combinatorial backbone design algorithm AbDesign where the fuzzy-logic framework was used to optimize protein backbones and sequences for both stability and binding affinity in antibody-design simulation. We now extend this framework and find that fuzzy-logic design simulations reproduce sequence and structure design principles seen in nature to underlie exquisite specificity on the one hand and multispecificity on the other hand. The fuzzy-logic language is broadly applicable and could help define the space of tolerated and beneficial mutations in natural biomolecular systems and design artificial molecules that encode complex characteristics.
为了开展其活动,生物大分子会平衡不同的物理特性,如稳定性、相互作用亲和力和选择性。在一个大分子系统中,这些往往相互对立的特性是如何编码的,对于我们理解进化过程以及设计具有所需功能的新分子的能力至关重要。我们提出了一个用于约束设计模拟以平衡不同物理特性的框架。每个特性由所需状态相对于其替代状态的平衡分数占有率表示,范围从无占有率到完全占有率,并且使用布尔运算符组合不同的特性,以实现一种用于编码任何特性组合的“模糊”逻辑语言。在另一篇论文中,我们提出了一种新的组合主链设计算法AbDesign,其中模糊逻辑框架用于在抗体设计模拟中优化蛋白质主链和序列的稳定性与结合亲和力。我们现在扩展这个框架,并发现模糊逻辑设计模拟重现了自然界中所见到的序列和结构设计原则——一方面是精确的特异性,另一方面是多特异性。模糊逻辑语言具有广泛的适用性,并且可以帮助定义天然生物分子系统中可耐受和有益突变的空间,以及设计编码复杂特性的人工分子。