Suppr超能文献

基于从头算数据的机器学习力场参数

Machine Learning Force Field Parameters from Ab Initio Data.

作者信息

Li Ying, Li Hui, Pickard Frank C, Narayanan Badri, Sen Fatih G, Chan Maria K Y, Sankaranarayanan Subramanian K R S, Brooks Bernard R, Roux Benoît

机构信息

Argonne Leadership Computing Facility, Argonne National Laboratory , Argonne, Illinois 60439, United States.

Department of Biochemistry and Molecular Biophysics, University of Chicago , Chicago, Illinois 60637, United States.

出版信息

J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503. doi: 10.1021/acs.jctc.7b00521. Epub 2017 Sep 1.

Abstract

Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor during the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local "shape" of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.

摘要

机器学习(ML)技术与遗传算法(GA)已被应用于仅使用来自分子簇在MP2/6-31G(d,p)、DFMP2(fc)/jul-cc-pVDZ和DFMP2(fc)/jul-cc-pVTZ水平的量子力学(QM)计算的从头算数据来确定可极化力场参数,以预测实验凝聚相性质(即密度和汽化热)。这种ML/GA方法的性能在4943个甲醇二聚体静电势和1250个甲醇团簇相互作用能上得到了验证。在QM计算的训练数据集和优化的力场模型之间实现了极好的一致性。通过在机器学习过程中引入一个偏移因子来补偿QM计算能量与优化力场再现能量之间的差异,同时保持QM能量表面的局部“形状”,结果得到了进一步改善。在整个机器学习过程中,实验可观测量未涉及目标函数,仅用于模型验证。从DFMP2(fc)/jul-cc-pVTZ水平的QM数据优化得到的最佳模型,其表现似乎甚至优于最初为匹配液体性质而凭经验优化的AMOEBA力场(amoeba09.prm)。目前的工作表明了仅使用QM数据利用机器学习技术开发描述性可极化力场的可能性。这里描述的用于优化力场参数的ML/GA策略可以很容易地扩展到其他分子系统。

相似文献

1
Machine Learning Force Field Parameters from Ab Initio Data.基于从头算数据的机器学习力场参数
J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503. doi: 10.1021/acs.jctc.7b00521. Epub 2017 Sep 1.
4
An improved generalized AMBER force field (GAFF) for urea.改进的通用 AMBER 力场(GAFF)用于尿素。
J Mol Model. 2010 Sep;16(9):1427-40. doi: 10.1007/s00894-010-0650-7. Epub 2010 Feb 17.
5
Fragment quantum mechanical calculation of proteins and its applications.蛋白质的碎量子力学计算及其应用。
Acc Chem Res. 2014 Sep 16;47(9):2748-57. doi: 10.1021/ar500077t. Epub 2014 May 22.
6
Calculation of Transport Parameters Using and AMOEBA Polarizable Force Field Methods.使用AMOEBA可极化力场方法计算传输参数
J Phys Chem A. 2021 Jun 10;125(22):4918-4927. doi: 10.1021/acs.jpca.1c03028. Epub 2021 May 26.

引用本文的文献

9
Open-Source Machine Learning in Computational Chemistry.开源机器学习在计算化学中的应用。
J Chem Inf Model. 2023 Aug 14;63(15):4505-4532. doi: 10.1021/acs.jcim.3c00643. Epub 2023 Jul 19.

本文引用的文献

4
Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.基于对称适配微扰理论的下一代力场。
Annu Rev Phys Chem. 2016 May 27;67:467-88. doi: 10.1146/annurev-physchem-040215-112047. Epub 2016 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验