Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
J Chem Phys. 2017 Oct 28;147(16):161732. doi: 10.1063/1.5006882.
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
从头算量子力学/分子力学(QM/MM)分子动力学模拟是一种有用的工具,可以计算化学反应的平均力势等热力学性质,但计算量非常大。在本文中,我们开发了一种新方法,使用内部力校正对具有预定义反应坐标的低级半经验 QM/MM 分子动力学采样进行校正。作为校正项,内部力由机器学习方案预测,该方案提供了一个复杂的力场,并在每个积分步骤中添加到与反应坐标相关的原子的原子力上。我们将该方法应用于水溶液中的两个反应,并在从头算 QM/MM 水平上再现了平均力势。计算成本的节省约为 2 个数量级。本工作揭示了机器学习在 QM/MM 模拟中研究复杂化学反应过程的巨大潜力。