Suppr超能文献

在 CN 单层上支撑的单个过渡金属原子的电化学氨合成的计算筛选。

Computational screening of a single transition metal atom supported on the CN monolayer for electrochemical ammonia synthesis.

机构信息

College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.

出版信息

Phys Chem Chem Phys. 2018 May 9;20(18):12835-12844. doi: 10.1039/c8cp01215f.

Abstract

The nitrogen reduction reaction (NRR) under ambient conditions using renewable energy is a green and sustainable strategy for the synthesis of NH3, which is one of the most important chemicals and carbon-free carriers. Thus, the search for low-cost, highly efficient, and stable NRR electrocatalysts is critical to achieve this goal. Herein, using comprehensive density functional theory (DFT) computations, we design a new class of NRR electrocatalysts based on a single transition metal (TM) atom supported on the experimentally feasible two-dimensional C2N monolayer (TM@C2N). Based on the computed free energies of each elementary pathway, Mo@C2N is predicted to exhibit the best catalytic activity among the TM@C2N, in which the proton-coupled electron transfer of the NH2* species to NH3(g) is the potential-determining step. Especially, the computed onset potential of the NRR on Mo@C2N is -0.17 V, which is even lower than that for the well-established stepped Ru(0001) surface (-0.43 V). Furthermore, the NRR catalytic performance of these TM@C2N can be well explained by their adsorption strength with N2H* species. Our findings open a new avenue for optimizing the TM catalytic performance for the NRR with the lowest number of metal atoms on porous low-dimensional materials.

摘要

在环境条件下使用可再生能源进行氮还原反应(NRR)是合成氨的一种绿色可持续策略,氨是最重要的化学品和无碳载体之一。因此,寻找低成本、高效和稳定的 NRR 电催化剂对于实现这一目标至关重要。在此,我们通过综合密度泛函理论(DFT)计算,设计了一类基于实验可行的二维 C2N 单层上负载单个过渡金属(TM)原子的新型 NRR 电催化剂(TM@C2N)。基于计算得到的各基元反应的自由能,预测 Mo@C2N 在 TM@C2N 中表现出最佳的催化活性,其中 NH2物种向 NH3(g)的质子耦合电子转移是决速步骤。特别地,Mo@C2N 上 NRR 的计算起始电位为-0.17 V,甚至低于公认的阶梯状 Ru(0001)表面(-0.43 V)。此外,这些 TM@C2N 的 NRR 催化性能可以通过它们与 N2H物种的吸附强度很好地解释。我们的发现为在多孔低维材料上用最少数量的金属原子优化 TM 对 NRR 的催化性能开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验