Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, ITQB NOVA, Av. da República EAN, 2780-157 Oeiras, Portugal.
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):823-832. doi: 10.1016/j.bbabio.2017.08.002. Epub 2017 Aug 8.
Type II NADH:quinone oxidoreductases (NDH-2s) are membrane bound enzymes that deliver electrons to the respiratory chain by oxidation of NADH and reduction of quinones. In this way, these enzymes also contribute to the regeneration of NAD, allowing several metabolic pathways to proceed. As for the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, the enzymatic mechanism of NDH-2s is still little explored and elusive. In this work we addressed the role of the conserved glutamate 172 (E172) residue in the enzymatic mechanism of NDH-2 from Staphylococcus aureus. We aimed to test our earlier hypothesis that E172 plays a key role in proton transfer to allow the protonation of the quinone. For this we performed a complete biochemical characterization of the enzyme's variants E172A, E172Q and E172S. Our steady state kinetic measurements show a clear decrease in the overall reaction rate, and our substrate interaction studies indicate the binding of the two substrates is also affected by these mutations. Interestingly our fast kinetic results show quinone reduction is more affected than NADH oxidation. We have also determined the X-ray crystal structure of the E172S mutant (2.55Ǻ) and compared it with the structure of the wild type (2.32Ǻ). Together these results support our hypothesis for E172 being of central importance in the catalytic mechanism of NDH-2, which may be extended to other members of the tDBDF superfamily.
Ⅱ型 NADH:醌氧化还原酶(NDH-2s)是一种膜结合酶,通过氧化 NADH 和还原醌将电子传递给呼吸链。通过这种方式,这些酶也有助于 NAD 的再生,允许几个代谢途径进行。对于二核苷酸结合结构域黄素蛋白(tDBDF)超家族的其他成员,NDH-2 的酶促机制仍未得到充分探索。在这项工作中,我们研究了金黄色葡萄球菌 NDH-2 中保守的谷氨酸 172(E172)残基在酶促机制中的作用。我们旨在验证我们之前的假设,即 E172 在质子转移中起关键作用,以允许醌质子化。为此,我们对酶的变体 E172A、E172Q 和 E172S 进行了全面的生化特性分析。我们的稳态动力学测量显示总反应速率明显下降,我们的底物相互作用研究表明,这些突变也影响了两种底物的结合。有趣的是,我们的快速动力学结果表明,醌的还原比 NADH 的氧化受影响更大。我们还确定了 E172S 突变体(2.55Ǻ)的 X 射线晶体结构,并将其与野生型结构(2.32Ǻ)进行了比较。这些结果共同支持了我们关于 E172 在 NDH-2 催化机制中具有核心重要性的假设,这一假设可能扩展到 tDBDF 超家族的其他成员。