Suppr超能文献

通过词的分布式表示来从人类大脑活动中解码自然体验。

Decoding naturalistic experiences from human brain activity via distributed representations of words.

机构信息

Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.

Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

Neuroimage. 2018 Oct 15;180(Pt A):232-242. doi: 10.1016/j.neuroimage.2017.08.017. Epub 2017 Aug 8.

Abstract

Natural visual scenes induce rich perceptual experiences that are highly diverse from scene to scene and from person to person. Here, we propose a new framework for decoding such experiences using a distributed representation of words. We used functional magnetic resonance imaging (fMRI) to measure brain activity evoked by natural movie scenes. Then, we constructed a high-dimensional feature space of perceptual experiences using skip-gram, a state-of-the-art distributed word embedding model. We built a decoder that associates brain activity with perceptual experiences via the distributed word representation. The decoder successfully estimated perceptual contents consistent with the scene descriptions by multiple annotators. Our results illustrate three advantages of our decoding framework: (1) three types of perceptual contents could be decoded in the form of nouns (objects), verbs (actions), and adjectives (impressions) contained in 10,000 vocabulary words; (2) despite using such a large vocabulary, we could decode novel words that were absent in the datasets to train the decoder; and (3) the inter-individual variability of the decoded contents co-varied with that of the contents of scene descriptions. These findings suggest that our decoding framework can recover diverse aspects of perceptual experiences in naturalistic situations and could be useful in various scientific and practical applications.

摘要

自然视觉场景会引发丰富的感知体验,这些体验在场景之间和人与人之间差异很大。在这里,我们提出了一种使用单词分布式表示来解码这些体验的新框架。我们使用功能磁共振成像 (fMRI) 测量了自然电影场景引起的大脑活动。然后,我们使用 skip-gram(一种最先进的分布式单词嵌入模型)构建了一个高维感知体验特征空间。我们构建了一个解码器,通过分布式单词表示将大脑活动与感知体验联系起来。解码器通过多个注释者成功地估计了与场景描述一致的感知内容。我们的结果说明了我们的解码框架的三个优势:(1) 可以以包含在 10000 个词汇中的名词(对象)、动词(动作)和形容词(印象)的形式解码三种类型的感知内容;(2) 尽管使用了如此大的词汇量,我们仍然可以解码不在数据集内的新单词,从而训练解码器;(3) 解码内容的个体间变异性与场景描述内容的变异性相关。这些发现表明,我们的解码框架可以恢复自然情境中多样化的感知体验方面,并且在各种科学和实际应用中可能很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验