Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America.
Department of Psychology, Yale University, New Haven, Connecticut, United States of America.
PLoS Comput Biol. 2020 Dec 3;16(12):e1008457. doi: 10.1371/journal.pcbi.1008457. eCollection 2020 Dec.
The extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model, as well as object representations, are more widely distributed across the brain than previously acknowledged and that functional searchlight can improve model-based similarity and decoding accuracy. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.
大脑功能是局部化还是分布式的程度是神经科学的一个基本问题。在人类大脑中,常见的 fMRI 方法,如聚类校正、图谱分割和解剖搜索光,在设计上偏向于寻找局部化的表示。在这里,我们引入了功能搜索光方法作为解剖搜索光分析的替代方法,解剖搜索光分析是最常用的探索性多变量 fMRI 技术。功能搜索光通过仅基于功能相似性而不是解剖邻近性对体素进行分组,从而消除了任何解剖偏差。我们报告的证据表明,来自深度神经网络的视觉和听觉特征以及来自自然语言处理模型的语义特征,以及物体表示,在大脑中的分布比以前认为的更广泛,并且功能搜索光可以提高基于模型的相似性和解码准确性。这种方法为用大脑活动评估和约束计算模型提供了一种新的途径,并将我们对人类大脑功能的理解进一步推向了从严格的模块化到分布式表示的范围。