Suppr超能文献

一种用于空间和概念计算的统一神经表征模型。

A unified neural representation model for spatial and conceptual computations.

作者信息

Haga Tatsuya, Oseki Yohei, Fukai Tomoki

机构信息

Neural Computation and Brain Coding Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 1919-1, Japan.

Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita-shi, Osaka 565-0871, Japan.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2413449122. doi: 10.1073/pnas.2413449122. Epub 2025 Mar 10.

Abstract

The hippocampus and entorhinal cortex encode spaces by spatially local and hexagonal grid activity patterns (place cells and grid cells), respectively. In addition, the same brain regions also implicate neural representations for nonspatial, semantic concepts (concept cells). These observations suggest that neurocomputational mechanisms for spatial knowledge and semantic concepts are related in the brain. However, the exact relationship remains to be understood. Here, we show a mathematical correspondence between a value function for goal-directed spatial navigation and an information measure for word embedding models in natural language processing. Based on this relationship, we integrate spatial and semantic computations into a neural representation model called "disentangled successor information" (DSI). DSI generates biologically plausible neural representations: spatial representations like place cells and grid cells, and concept-specific word representations which resemble concept cells. Furthermore, with DSI representations, we can perform inferences of spatial contexts and words by a common computational framework based on simple arithmetic operations. This computation can be biologically interpreted by partial modulations of cell assemblies of nongrid cells and concept cells. Our model offers a theoretical connection of spatial and semantic computations and suggests possible computational roles of hippocampal and entorhinal neural representations.

摘要

海马体和内嗅皮质分别通过空间局部和六边形网格活动模式(位置细胞和网格细胞)对空间进行编码。此外,相同的脑区也涉及非空间语义概念的神经表征(概念细胞)。这些观察结果表明,大脑中空间知识和语义概念的神经计算机制是相关的。然而,确切的关系仍有待了解。在这里,我们展示了用于目标导向空间导航的价值函数与自然语言处理中词嵌入模型的信息度量之间的数学对应关系。基于这种关系,我们将空间和语义计算整合到一个称为“解缠后继信息”(DSI)的神经表征模型中。DSI生成生物学上合理的神经表征:类似于位置细胞和网格细胞的空间表征,以及类似于概念细胞的特定概念词表征。此外,利用DSI表征,我们可以通过基于简单算术运算的通用计算框架进行空间上下文和单词的推理。这种计算可以通过非网格细胞和概念细胞的细胞集合的部分调制进行生物学解释。我们的模型提供了空间和语义计算的理论联系,并暗示了海马体和内嗅神经表征可能的计算作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb6/11929392/28d416ab6889/pnas.2413449122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验