Suppr超能文献

全原子分子动力学模拟研究人胰淀素二聚体在膜环境中的结构特性。

Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations.

机构信息

Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key laboratory of magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.

University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

出版信息

Sci Rep. 2017 Aug 11;7(1):7915. doi: 10.1038/s41598-017-08504-x.

Abstract

The aggregation of human islet amyloid polypeptide (hIAPP) can damage the membrane of the β-cells in the pancreatic islets and induce type 2 diabetes (T2D). Growing evidences indicated that the major toxic species are small oligomers of IAPP. Due to the fast aggregation nature, it is hard to characterize the structures of IAPP oligomers by experiments, especially in the complex membrane environment. On the other side, molecular dynamics simulation can provide atomic details of the structure and dynamics of the aggregation of IAPP. In this study, all-atom bias-exchange metadynamics (BE-Meta) and unbiased molecular dynamics simulations were employed to study the structural properties of IAPP dimer in the membranes environments. A number of intermediates, including α-helical states, β-sheet states, and fully disordered states, are identified. The formation of N-terminal β-sheet structure is prior to the C-terminal β-sheet structure towards the final fibril-like structures. The α-helical intermediates have lower propensity in the dimeric hIAPP and are off-pathway intermediates. The simulations also demonstrate that the β-sheet intermediates induce more perturbation on the membrane than the α-helical and disordered states and thus pose higher disruption ability.

摘要

人胰岛淀粉样多肽(hIAPP)的聚集会破坏胰腺胰岛中β细胞的膜,并引发 2 型糖尿病(T2D)。越来越多的证据表明,主要的毒性物种是 IAPP 的小寡聚物。由于其快速聚集的性质,很难通过实验来描述 IAPP 寡聚物的结构,尤其是在复杂的膜环境中。另一方面,分子动力学模拟可以提供 IAPP 聚集结构和动力学的原子细节。在这项研究中,采用全原子偏置交换元动力学(BE-Meta)和无偏分子动力学模拟来研究 IAPP 二聚体在膜环境中的结构特性。确定了许多中间体,包括α-螺旋状态、β-折叠状态和完全无序状态。N 端β-折叠结构的形成先于 C 端β-折叠结构,最终形成纤维状结构。α-螺旋中间体在二聚体 hIAPP 中倾向较低,是偏离途径的中间体。模拟还表明,β-折叠中间体对膜的干扰比α-螺旋和无序状态更大,因此具有更高的破坏能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d31e/5554177/1582d833a115/41598_2017_8504_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验