Fal Kateryna, Asnacios Atef, Chabouté Marie-Edith, Hamant Olivier
Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France.
Biophys Rev. 2017 Aug;9(4):389-403. doi: 10.1007/s12551-017-0302-6. Epub 2017 Aug 12.
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
在动物中,现已明确,施加于细胞表面的力会通过细胞骨架传递至细胞核,导致核结构变形,并有可能改变基因表达。与此一致的是,核力学改变与许多遗传疾病有关,如肌肉萎缩症、心肌病和早衰症。在植物中,机械信号在细胞和发育生物学中的整合也取得了很大进展。然而,虽然细胞壁应力与细胞骨架之间的联系已得到巩固,但这种皮质机械信号尚未与核骨架整合。在此,我们建议借鉴动物细胞核研究的经验,确定适用于探究植物细胞核力学和变形的相关方法,重点是微观流变学。为了确定潜在的分子靶点,我们还比较了植物和动物细胞核中核膜上的相关成分,即核纤层和LINC复合体。了解机械信号如何在不同生物界中传递至细胞核,可能会对发育(如机械信号如何增强基因表达模式的稳健性)、核骨架 - 细胞骨架联系(如在膨胀/有细胞壁的细胞中应力如何传播)以及转录控制、染色质生物学和表观遗传学产生重要影响。