Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60615.
James Franck Institute, The University of Chicago, Chicago, IL 60615.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9261-9266. doi: 10.1073/pnas.1703958114. Epub 2017 Aug 11.
Animals regulate their food intake in response to the available level of food. Recent observations of feeding dynamics in small animals showed feeding patterns of bursts and pauses, but their function is unknown. Here, we present a data-driven decision-theoretical model of feeding in Our central assumption is that food intake serves a dual purpose: to gather information about the external food level and to ingest food when the conditions are good. The model recapitulates experimentally observed feeding patterns. It naturally implements trade-offs between speed versus accuracy and exploration versus exploitation in responding to a dynamic environment. We find that the model predicts three distinct regimes in responding to a dynamical environment, with a transition region where animals respond stochastically to periodic signals. This stochastic response accounts for previously unexplained experimental data.
动物会根据食物的可获得水平来调节食物摄入量。最近对小动物进食动态的观察显示,它们的进食模式有爆发和停顿,但它们的功能尚不清楚。在这里,我们提出了一个基于数据的进食决策理论模型。我们的中心假设是,进食有两个目的:一是收集关于外部食物水平的信息,二是在条件良好时摄入食物。该模型再现了实验观察到的进食模式。它自然地在响应动态环境时实现了速度与准确性、探索与利用之间的权衡。我们发现,该模型预测了动物对动态环境的三种不同反应状态,在一个过渡区域,动物对周期性信号随机反应。这种随机反应解释了以前无法解释的实验数据。