Suppr超能文献

觅食作为一种证据积累过程。

Foraging as an evidence accumulation process.

机构信息

Department Collective Behavior, Max Planck Institute for Animal Behavior, Konstanz, Germany.

Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.

出版信息

PLoS Comput Biol. 2019 Jul 24;15(7):e1007060. doi: 10.1371/journal.pcbi.1007060. eCollection 2019 Jul.

Abstract

The patch-leaving problem is a canonical foraging task, in which a forager must decide to leave a current resource in search for another. Theoretical work has derived optimal strategies for when to leave a patch, and experiments have tested for conditions where animals do or do not follow an optimal strategy. Nevertheless, models of patch-leaving decisions do not consider the imperfect and noisy sampling process through which an animal gathers information, and how this process is constrained by neurobiological mechanisms. In this theoretical study, we formulate an evidence accumulation model of patch-leaving decisions where the animal averages over noisy measurements to estimate the state of the current patch and the overall environment. We solve the model for conditions where foraging decisions are optimal and equivalent to the marginal value theorem, and perform simulations to analyze deviations from optimal when these conditions are not met. By adjusting the drift rate and decision threshold, the model can represent different "strategies", for example an incremental, decremental, or counting strategy. These strategies yield identical decisions in the limiting case but differ in how patch residence times adapt when the foraging environment is uncertain. To describe sub-optimal decisions, we introduce an energy-dependent marginal utility function that predicts longer than optimal patch residence times when food is plentiful. Our model provides a quantitative connection between ecological models of foraging behavior and evidence accumulation models of decision making. Moreover, it provides a theoretical framework for potential experiments which seek to identify neural circuits underlying patch-leaving decisions.

摘要

“离片问题”是一个典型的觅食任务,其中觅食者必须决定离开当前的资源以寻找另一个。理论工作已经推导出了何时离开斑块的最优策略,并且实验已经测试了动物是否遵循最优策略的条件。然而,斑块离开决策的模型并没有考虑动物通过不完美和嘈杂的采样过程来收集信息,以及这个过程如何受到神经生物学机制的限制。在这项理论研究中,我们提出了一个斑块离开决策的证据积累模型,其中动物对噪声测量进行平均,以估计当前斑块和整体环境的状态。我们为最优觅食决策的条件下求解模型,并与边际值定理进行等效分析,当这些条件不满足时,分析偏离最优的情况。通过调整漂移率和决策阈值,该模型可以表示不同的“策略”,例如递增、递减或计数策略。这些策略在极限情况下会产生相同的决策,但在觅食环境不确定时,斑块停留时间的适应方式不同。为了描述次优决策,我们引入了一个依赖能量的边际效用函数,该函数在食物充足时预测出比最优更长的斑块停留时间。我们的模型为觅食行为的生态模型和决策的证据积累模型之间提供了定量联系。此外,它为潜在的实验提供了一个理论框架,这些实验旨在确定与斑块离开决策相关的神经回路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbcc/6682163/e1bed0c16516/pcbi.1007060.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验