Surappa Sushruta, Satir Sarp, Levent Degertekin F
G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Appl Phys Lett. 2017 Jul 24;111(4):043503. doi: 10.1063/1.4995564.
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
本文描述并通过实验展示了一种基于参数谐振器结构的电容式超声换能器。我们将这种换能器结构称为电容式参数超声换能器(CPUT),它采用了一个带有可移动膜片的平行板电容器,作为一个谐振频率为f的简并参数串联RLC谐振器电路的一部分。当电容器极板以足够的幅度被频率为2f的入射谐波超声波驱动时,RLC电路变得不稳定,超声能量可以在RLC电路中被有效地转换为频率为f的电信号。CPUT的一个重要特性是,与其他静电换能器不同,它作为接收器使用时不需要直流偏置或永久充电。我们使用解析模型和数值模拟来描述CPUT的工作原理,结果表明,当超过某个阈值时,其工作模式与驱动幅度有关,包括参数谐振。我们通过在浸没环境中对基于微机械膜片的电容器结构进行实验,验证了这些预测,在实验中,频率为4.28 MHz的超声波以参数方式驱动了2.14 MHz的RLC电路中的一个具有显著幅度的信号。凭借其独特的特性,CPUT在生物医学植入物的无线功率传输和声传感等应用中可能具有特别的优势。