Suppr超能文献

使用深度玻尔兹曼机的形状补全

Shape Completion Using Deep Boltzmann Machine.

作者信息

Wang Zheng, Wu Qingbiao

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Comput Intell Neurosci. 2017;2017:5705693. doi: 10.1155/2017/5705693. Epub 2017 Jul 19.

Abstract

Shape completion is an important task in the field of image processing. An alternative method is to capture the shape information and finish the completion by a generative model, such as Deep Boltzmann Machine. With its powerful ability to deal with the distribution of the shapes, it is quite easy to acquire the result by sampling from the model. In this paper, we make use of the hidden activation of the DBM and incorporate it with the convolutional shape features to fit a regression model. We compare the output of the regression model with the incomplete shape feature in order to set a proper and compact mask for sampling from the DBM. The experiment shows that our method can obtain realistic results without any prior information about the incomplete object shape.

摘要

形状补全是图像处理领域中的一项重要任务。一种替代方法是捕获形状信息并通过生成模型(如深度玻尔兹曼机)来完成补全。凭借其处理形状分布的强大能力,通过从模型中采样很容易获得结果。在本文中,我们利用深度玻尔兹曼机的隐藏激活,并将其与卷积形状特征相结合来拟合回归模型。我们将回归模型的输出与不完整形状特征进行比较,以便为从深度玻尔兹曼机采样设置合适且紧凑的掩码。实验表明,我们的方法无需关于不完整物体形状的任何先验信息就能获得逼真的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71f3/5540412/72f729f88bda/CIN2017-5705693.001.jpg

相似文献

1
Shape Completion Using Deep Boltzmann Machine.使用深度玻尔兹曼机的形状补全
Comput Intell Neurosci. 2017;2017:5705693. doi: 10.1155/2017/5705693. Epub 2017 Jul 19.
3
Salient object detection based on multi-scale contrast.基于多尺度对比度的显著目标检测。
Neural Netw. 2018 May;101:47-56. doi: 10.1016/j.neunet.2018.02.005. Epub 2018 Feb 13.
5
7
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
Deep learning with convolutional neural network in radiology.放射学中基于卷积神经网络的深度学习。
Jpn J Radiol. 2018 Apr;36(4):257-272. doi: 10.1007/s11604-018-0726-3. Epub 2018 Mar 1.
10
Overview of deep learning in medical imaging.医学成像中的深度学习概述。
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.

本文引用的文献

1
An Infinite Restricted Boltzmann Machine.一种无限受限玻尔兹曼机。
Neural Comput. 2016 Jul;28(7):1265-88. doi: 10.1162/NECO_a_00848. Epub 2016 May 12.
2
Image Completion Approaches Using the Statistics of Similar Patches.基于相似补丁统计的图像补全方法。
IEEE Trans Pattern Anal Mach Intell. 2014 Dec;36(12):2423-35. doi: 10.1109/TPAMI.2014.2330611.
3
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
4
Representation learning: a review and new perspectives.表示学习:综述与新视角。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
5
A fast learning algorithm for deep belief nets.一种用于深度信念网络的快速学习算法。
Neural Comput. 2006 Jul;18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验