Suppr超能文献

基于尿液 RNA 的前列腺癌检测生物标志物。

Urinary RNA-based biomarkers for prostate cancer detection.

机构信息

Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy.

Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy.

出版信息

Clin Chim Acta. 2017 Oct;473:96-105. doi: 10.1016/j.cca.2017.08.009. Epub 2017 Aug 12.

Abstract

Prostate cancer (PCa) is the commonest malignancy in the male population worldwide. Serum prostate specific antigen (PSA) test is the most important biomarker for the detection, follow-up and therapeutic monitoring of PCa. Defects in PSA specificity have elicited research for new biomarkers to improve early diagnosis and avoid false-positive results. This review evaluates urinary RNA-based biomarkers. Urine is a versatile body fluid for non-invasive biomarker detection in case of urological malignancies. The importance of RNA-based biomarkers has been demonstrated by the current use of PCA3, a long non coding RNA biomarker already approved by the Food and Drugs Administration. Through the years, other urinary RNA biomarkers have been evaluated, including the well-known TMPRSS2:ERG transcript, as well as many messenger RNAs, long non coding RNAs and micro-RNA. Validation of a specific urinary RNA-based marker or an algorithm of different biomarkers levels as diagnostic markers for PCa could be useful to avoid unnecessary prostate biopsies.

摘要

前列腺癌(PCa)是全球男性人群中最常见的恶性肿瘤。血清前列腺特异性抗原(PSA)检测是 PCa 的检测、随访和治疗监测的最重要生物标志物。PSA 特异性的缺陷引发了对新生物标志物的研究,以提高早期诊断和避免假阳性结果。本综述评估了基于尿液的 RNA 生物标志物。尿液是一种用于检测尿路上皮恶性肿瘤的非侵入性生物标志物的多功能体液。基于 RNA 的生物标志物的重要性已经通过当前使用的 PCA3 得到证明,PCA3 是一种长非编码 RNA 生物标志物,已获得美国食品和药物管理局的批准。多年来,已经评估了其他基于尿液的 RNA 生物标志物,包括众所周知的 TMPRSS2:ERG 转录本,以及许多信使 RNA、长非编码 RNA 和 micro-RNA。验证特定的基于尿液的 RNA 标志物或不同生物标志物水平的算法作为 PCa 的诊断标志物可能有助于避免不必要的前列腺活检。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验