Suppr超能文献

新型启动子可增强灵长类动物视网膜中的光遗传学视觉恢复敏感性。

A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina.

机构信息

INSERM U968, Institut de la Vision, 75012 Paris, France; UMRS968, Institut de la Vision, Sorbonne Universités, Pierre et Marie Curie University (UPMC) University Paris 06, 75012 Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR7210, Institut de la Vision, 75012 Paris, France.

Sanofi Ophthalmology Unit, 17 rue Moreau, 75012 Paris, France.

出版信息

Mol Ther. 2017 Nov 1;25(11):2546-2560. doi: 10.1016/j.ymthe.2017.07.011. Epub 2017 Jul 20.

Abstract

The majority of inherited retinal degenerations converge on the phenotype of photoreceptor cell death. Second- and third-order neurons are spared in these diseases, making it possible to restore retinal light responses using optogenetics. Viral expression of channelrhodopsin in the third-order neurons under ubiquitous promoters was previously shown to restore visual function, albeit at light intensities above illumination safety thresholds. Here, we report (to our knowledge, for the first time) activation of macaque retinas, up to 6 months post-injection, using channelrhodopsin-Ca-permeable channelrhodopsin (CatCh) at safe light intensities. High-level CatCh expression was achieved due to a new promoter based on the regulatory region of the gamma-synuclein gene (SNCG) allowing strong expression in ganglion cells across species. Our promoter, in combination with clinically proven adeno-associated virus 2 (AAV2), provides CatCh expression in peri-foveolar ganglion cells responding robustly to light under the illumination safety thresholds for the human eye. On the contrary, the threshold of activation and the proportion of unresponsive cells were much higher when a ubiquitous promoter (cytomegalovirus [CMV]) was used to express CatCh. The results of our study suggest that the inclusion of optimized promoters is key in the path to clinical translation of optogenetics.

摘要

大多数遗传性视网膜退行性疾病的表型都集中在光感受器细胞死亡上。这些疾病中第二级和第三级神经元得以幸免,这使得使用光遗传学恢复视网膜光反应成为可能。先前已经证明,在普遍启动子的作用下,第三级神经元中通道型视紫红质的病毒表达可以恢复视觉功能,尽管是在超过光照安全阈值的光强下。在这里,我们报告(据我们所知,首次)使用钙通透性通道型视紫红质(CatCh)在安全光强下激活猕猴视网膜,时间可长达注射后 6 个月。由于基于γ-突触核蛋白(SNCG)基因调节区的新型启动子允许在跨物种的神经节细胞中实现高水平的 CatCh 表达,因此实现了高水平的 CatCh 表达。我们的启动子与经过临床验证的腺相关病毒 2(AAV2)相结合,在人眼的光照安全阈值下,在近黄斑的神经节细胞中提供对光反应灵敏的 CatCh 表达。相反,当使用普遍启动子(巨细胞病毒 [CMV])表达 CatCh 时,激活的阈值和无反应细胞的比例要高得多。我们的研究结果表明,包含优化启动子是光遗传学向临床转化的关键。

相似文献

1
A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina.
Mol Ther. 2017 Nov 1;25(11):2546-2560. doi: 10.1016/j.ymthe.2017.07.011. Epub 2017 Jul 20.
4
Optogenetic restoration of high sensitivity vision with bReaChES, a red-shifted channelrhodopsin.
Sci Rep. 2022 Nov 11;12(1):19312. doi: 10.1038/s41598-022-23572-4.
6
Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina.
EMBO Mol Med. 2016 Nov 2;8(11):1248-1264. doi: 10.15252/emmm.201505699. Print 2016 Nov.
8
rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo.
PLoS One. 2013 Jun 14;8(6):e66332. doi: 10.1371/journal.pone.0066332. Print 2013.
10
Optogenetic Strategies for Vision Restoration.
Adv Exp Med Biol. 2021;1293:545-555. doi: 10.1007/978-981-15-8763-4_38.

引用本文的文献

2
Reactivating the phototransduction cascade with a mutation agnostic gene therapy preserves vision in rod-cone dystrophies.
iScience. 2025 Feb 25;28(4):112106. doi: 10.1016/j.isci.2025.112106. eCollection 2025 Apr 18.
4
Intravitreal AAV2 gene delivery to feline retinal ganglion cells.
Vision Res. 2025 Jan;226:108519. doi: 10.1016/j.visres.2024.108519. Epub 2024 Nov 16.
5
Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner.
J Neurosci. 2024 Dec 4;44(49):e1215242024. doi: 10.1523/JNEUROSCI.1215-24.2024.
6
Gene therapy for glaucoma: Targeting key mechanisms.
Vision Res. 2024 Dec;225:108502. doi: 10.1016/j.visres.2024.108502. Epub 2024 Oct 18.
7
A flexible high-precision photoacoustic retinal prosthesis.
bioRxiv. 2024 Nov 22:2024.09.03.611068. doi: 10.1101/2024.09.03.611068.
8
AAV dose-dependent transduction efficiency in retinal ganglion cells and functional efficacy of optogenetic vision restoration.
Gene Ther. 2024 Nov;31(11-12):572-579. doi: 10.1038/s41434-024-00485-7. Epub 2024 Sep 5.
9
Emerging optogenetics technologies in biomedical applications.
Smart Med. 2023 Nov 1;2(4):e20230026. doi: 10.1002/SMMD.20230026. eCollection 2023 Nov.

本文引用的文献

1
Melanopsin Contributions to the Representation of Images in the Early Visual System.
Curr Biol. 2017 Jun 5;27(11):1623-1632.e4. doi: 10.1016/j.cub.2017.04.046. Epub 2017 May 18.
2
Evaluation of Dose and Safety of AAV7m8 and AAV8BP2 in the Non-Human Primate Retina.
Hum Gene Ther. 2017 Feb;28(2):154-167. doi: 10.1089/hum.2016.111. Epub 2016 Oct 17.
3
Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina.
EMBO Mol Med. 2016 Nov 2;8(11):1248-1264. doi: 10.15252/emmm.201505699. Print 2016 Nov.
5
Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results.
Ophthalmology. 2016 Mar;123(3):558-70. doi: 10.1016/j.ophtha.2015.10.025. Epub 2015 Nov 19.
6
Restoration of Vision with Ectopic Expression of Human Rod Opsin.
Curr Biol. 2015 Aug 17;25(16):2111-22. doi: 10.1016/j.cub.2015.07.029. Epub 2015 Jul 30.
7
Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity.
Mol Ther. 2015 Oct;23(10):1562-71. doi: 10.1038/mt.2015.121. Epub 2015 Jul 3.
8
Brains, genes, and primates.
Neuron. 2015 May 6;86(3):617-31. doi: 10.1016/j.neuron.2015.03.021.
9
Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool.
PLoS Biol. 2015 May 7;13(5):e1002143. doi: 10.1371/journal.pbio.1002143. eCollection 2015 May.
10
Photovoltaic restoration of sight with high visual acuity.
Nat Med. 2015 May;21(5):476-82. doi: 10.1038/nm.3851. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验