Suppr超能文献

分离的中皮质和中边缘通路编码努力和奖励学习信号。

Separate mesocortical and mesolimbic pathways encode effort and reward learning signals.

机构信息

Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom;

Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7395-E7404. doi: 10.1073/pnas.1705643114. Epub 2017 Aug 14.

Abstract

Optimal decision making mandates organisms learn the relevant features of choice options. Likewise, knowing how much effort we should expend can assume paramount importance. A mesolimbic network supports reward learning, but it is unclear whether other choice features, such as effort learning, rely on this same network. Using computational fMRI, we show parallel encoding of effort and reward prediction errors (PEs) within distinct brain regions, with effort PEs expressed in dorsomedial prefrontal cortex and reward PEs in ventral striatum. We show a common mesencephalic origin for these signals evident in overlapping, but spatially dissociable, dopaminergic midbrain regions expressing both types of PE. During action anticipation, reward and effort expectations were integrated in ventral striatum, consistent with a computation of an overall net benefit of a stimulus. Thus, we show that motivationally relevant stimulus features are learned in parallel dopaminergic pathways, with formation of an integrated utility signal at choice.

摘要

最优决策要求生物体学习选择选项的相关特征。同样,了解我们应该投入多少努力可能变得至关重要。中脑边缘网络支持奖励学习,但尚不清楚其他选择特征(如努力学习)是否依赖于相同的网络。使用计算功能磁共振成像,我们在不同的大脑区域中显示了努力和奖励预测误差(PE)的并行编码,其中努力 PE 在背内侧前额叶皮层中表达,而奖励 PE 在腹侧纹状体中表达。我们表明,这些信号具有共同的中脑起源,在表达这两种类型的 PE 的重叠但空间上可分离的多巴胺能中脑区域中显而易见。在动作预期期间,奖励和努力的预期在腹侧纹状体中被整合,这与刺激的整体净收益的计算一致。因此,我们表明,与动机相关的刺激特征在并行的多巴胺能通路中被学习,在选择时形成了一个综合的效用信号。

相似文献

1
7
Computational heterogeneity in the human mesencephalic dopamine system.人类中脑多巴胺系统的计算异质性。
Cogn Affect Behav Neurosci. 2013 Dec;13(4):747-56. doi: 10.3758/s13415-013-0191-5.

引用本文的文献

2
Brain organoids: building higher-order complexity and neural circuitry models.脑类器官:构建更高阶复杂性和神经回路模型
Trends Biotechnol. 2025 Jul;43(7):1583-1598. doi: 10.1016/j.tibtech.2025.02.009. Epub 2025 Apr 12.
3
Day-to-day fluctuations in motivation drive effort-based decision-making.动机的日常波动驱动基于努力的决策。
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2417964122. doi: 10.1073/pnas.2417964122. Epub 2025 Mar 17.
4
Establishing functionally segregated dopaminergic circuits.建立功能上分离的多巴胺能回路。
Trends Neurosci. 2025 Feb;48(2):156-170. doi: 10.1016/j.tins.2024.12.002. Epub 2025 Jan 24.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验