Suppr超能文献

自然界中是什么限制了光合能量转换效率?来自海洋的启示。

What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

作者信息

Falkowski Paul G, Lin Hanzhi, Gorbunov Maxim Y

机构信息

Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA

Department of Earth and Planetary Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ 08540, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0376.

Abstract

Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

摘要

限制自然界中的光合能量转换效率具有挑战性。原则上,必须同时进行两项产量测量:光化学、荧光和/或热耗散。我们构建了两种不同的、极其灵敏且精确的有源荧光计:一种通过可变荧光的变化测量光化学的量子产率,另一种在皮秒时域测量荧光寿命。通过在六年内进行八次跨洋航行部署这对仪器,我们从五个大洋盆地的表层水体获得了超过200000次荧光产率和寿命的测量数据。我们的结果表明,光化学的平均量子产率约为0.35,而荧光的平均量子产率约为0.07。因此,能量收支的平衡表明,世界海洋中浮游植物吸收的光子平均约有58%以热量形式耗散。这种极低的效率与上层海洋中营养物质的匮乏有关,尤其是溶解无机氮和铁。我们的结果有力地表明,在自然界中,大多数时候,大多数浮游植物群落的光合能量转换效率约为其最大效率的一半,因为营养物质限制了光合装置中关键成分的合成或功能。本文是主题为“提高作物光合作用:改进目标”特刊的一部分。

相似文献

5
Photosynthesis solutions to enhance productivity.提高生产力的光合作用解决方案。
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0374.
6
Nutrients that limit growth in the ocean.限制海洋中生物生长的营养物质。
Curr Biol. 2017 Jun 5;27(11):R474-R478. doi: 10.1016/j.cub.2017.03.030.

引用本文的文献

9
Photosynthetic energy conversion efficiency in the West Antarctic Peninsula.西南极半岛的光合能量转换效率。
Limnol Oceanogr. 2020 Dec;65(12):2912-2925. doi: 10.1002/lno.11562. Epub 2020 Jul 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验