Suppr超能文献

在氧化条件下,通过光化学反应中心的超快电荷复合实现光保护。

Photoprotection through ultrafast charge recombination in photochemical reaction centres under oxidizing conditions.

作者信息

Ma Fei, Swainsbury David J K, Jones Michael R, van Grondelle Rienk

机构信息

Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0378.

Abstract

Engineering natural photosynthesis to address predicted shortfalls in food and energy supply requires a detailed understanding of its molecular basis and the intrinsic photoprotective mechanisms that operate under fluctuating environmental conditions. Long-lived triplet or singlet excited electronic states have the potential to cause photodamage, particularly in the presence of oxygen, and so a variety of mechanisms exist to prevent formation of such states or safely dissipate their energy. Here, we report a dramatic difference in spectral evolution in fully reduced and partially oxidized reaction centres (RCs) following excitation of the monomeric bacteriochlorophyll (BChl) cofactors at 805 nm. Three types of preparation were studied, including RCs purified as protein/lipid nanodiscs using the copolymer styrene maleic acid. In fully reduced RCs such excitation produces membrane-spanning charge separation. In preparations of partially oxidized RCs the spectroscopic signature of this charge separation is replaced by that of an energy dissipation process, including in the majority sub-population of reduced RCs. This process, which appears to take place on both cofactor branches, involves formation of a BChl/bacteriopheophytin radical pair that dissipates energy via recombination to a vibrationally hot ground state. The possible physiological role of this dissipative process under mildly oxidizing conditions is considered.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

摘要

通过工程化改造自然光合作用来应对预计的食物和能源供应短缺问题,需要详细了解其分子基础以及在波动环境条件下运行的内在光保护机制。长寿命的三重态或单重态激发电子态有可能导致光损伤,尤其是在有氧存在的情况下,因此存在多种机制来防止此类状态的形成或安全地耗散其能量。在这里,我们报告了在805 nm激发单体细菌叶绿素(BChl)辅因子后,完全还原和部分氧化的反应中心(RCs)光谱演化的显著差异。研究了三种类型的制剂,包括使用共聚物苯乙烯马来酸作为蛋白质/脂质纳米盘纯化的RCs。在完全还原的RCs中,这种激发会产生跨膜电荷分离。在部分氧化的RCs制剂中,这种电荷分离的光谱特征被能量耗散过程的特征所取代,包括在还原RCs的大多数亚群中。这个过程似乎发生在两个辅因子分支上,涉及形成一个BChl/细菌脱镁叶绿素自由基对,该自由基对通过重组为振动热基态来耗散能量。本文考虑了这种耗散过程在轻度氧化条件下可能的生理作用。本文是主题为“提高作物光合作用:改进目标”的特刊的一部分。

相似文献

本文引用的文献

1
Solar energy for electricity and fuels.用于发电和生产燃料的太阳能。
Ambio. 2016 Jan;45 Suppl 1(Suppl 1):S15-23. doi: 10.1007/s13280-015-0729-6.
2
Photosynthetic constraints on fuel from microbes.微生物燃料的光合限制
Front Bioeng Biotechnol. 2015 Mar 18;3:36. doi: 10.3389/fbioe.2015.00036. eCollection 2015.
5
Natural strategies for photosynthetic light harvesting.自然光捕获的天然策略。
Nat Chem Biol. 2014 Jul;10(7):492-501. doi: 10.1038/nchembio.1555.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验