Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy.
Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058, Basel, Switzerland.
Sci Rep. 2017 Aug 14;7(1):8075. doi: 10.1038/s41598-017-08747-8.
Resistance-Nodulation-cell Division (RND) transporters AcrB and AcrD of Escherichia coli expel a wide range of substrates out of the cell in conjunction with AcrA and TolC, contributing to the onset of bacterial multidrug resistance. Despite sharing an overall sequence identity of ~66% (similarity ~80%), these RND transporters feature distinct substrate specificity patterns whose underlying basis remains elusive. We performed exhaustive comparative analyses of the putative substrate binding pockets considering crystal structures, homology models and conformations extracted from multi-copy μs-long molecular dynamics simulations of both AcrB and AcrD. The impact of physicochemical and topographical properties (volume, shape, lipophilicity, electrostatic potential, hydration and distribution of multi-functional sites) within the pockets on their substrate specificities was quantitatively assessed. Differences in the lipophilic and electrostatic potentials among the pockets were identified. In particular, the deep pocket of AcrB showed the largest lipophilicity convincingly pointing out its possible role as a lipophilicity-based selectivity filter. Furthermore, we identified dynamic features (not inferable from sequence analysis or static structures) such as different flexibilities of specific protein loops that could potentially influence the substrate recognition and transport profile. Our findings can be valuable for drawing structure (dynamics)-activity relationship to be employed in drug design.
大肠杆菌的 RND 转运蛋白 AcrB 和 AcrD 与 AcrA 和 TolC 一起将多种底物排出细胞,导致细菌产生多药耐药性。尽管它们的整体序列同一性约为 66%(相似性约为 80%),但这些 RND 转运蛋白具有不同的底物特异性模式,其潜在基础仍不清楚。我们对假定的底物结合口袋进行了详尽的比较分析,考虑了晶体结构、同源建模和从 AcrB 和 AcrD 的多拷贝μs 长分子动力学模拟中提取的构象。定量评估了口袋内物理化学和拓扑性质(体积、形状、疏水性、静电势、水合作用和多功能位点的分布)对其底物特异性的影响。鉴定了口袋之间的疏水性和静电势的差异。特别是,AcrB 的深口袋表现出最大的疏水性,令人信服地指出其可能作为疏水性选择性过滤器的作用。此外,我们还确定了一些动态特征(无法从序列分析或静态结构推断),例如特定蛋白质环的不同柔韧性,这可能会影响底物识别和转运特性。我们的研究结果可用于绘制结构(动力学)-活性关系,以应用于药物设计。