文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

耐药-结节细胞分裂转运蛋白的结构分析。

Structural analysis of resistance-nodulation cell division transporters.

机构信息

Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.

出版信息

Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0019823. doi: 10.1128/mmbr.00198-23. Epub 2024 Mar 29.


DOI:10.1128/mmbr.00198-23
PMID:38551344
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11332337/
Abstract

SUMMARYInfectious bacteria have both intrinsic and acquired mechanisms to combat harmful biocides that enter the cell. Through adaptive pressures, many of these pathogens have become resistant to many, if not all, of the current antibiotics used today to treat these often deadly infections. One prominent mechanism is the upregulation of efflux systems, especially the resistance-nodulation-cell division class of exporters. These tripartite systems consist of an inner membrane transporter coupled with a periplasmic adaptor protein and an outer membrane channel to efficiently transport a diverse array of substrates from inside the cell to the extracellular space. Detailed mechanistic insight into how these inner membrane transporters recognize and shuttle their substrates can ultimately inform both new antibiotic and efflux pump inhibitor design. This review examines the structural basis of substrate recognition of these pumps and the molecular mechanisms underlying multidrug extrusion, which in turn mediate antimicrobial resistance in bacterial pathogens.

摘要

摘要 传染性细菌具有内在和获得性机制来对抗进入细胞的有害消毒剂。由于适应压力,许多病原体对目前用于治疗这些致命感染的许多(如果不是全部)抗生素产生了耐药性。一种突出的机制是外排系统的上调,特别是耐药-结节-细胞分裂(RND)类外排泵。这些三联系统由一个内膜转运蛋白与周质内的一个适配蛋白以及一个外膜通道组成,能够有效地将各种底物从细胞内转运到细胞外。深入了解这些内膜转运蛋白如何识别和转运它们的底物,最终可以为新的抗生素和外排泵抑制剂的设计提供信息。这篇综述考察了这些泵底物识别的结构基础以及多药外排的分子机制,这反过来又介导了细菌病原体的抗药性。

相似文献

[1]
Structural analysis of resistance-nodulation cell division transporters.

Microbiol Mol Biol Rev. 2024-6-27

[2]
Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters.

Chem Rev. 2021-5-12

[3]
Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance.

Microbiol Mol Biol Rev. 2024-9-26

[4]
Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump.

Microbiol Spectr. 2022-10-26

[5]
Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance.

Microbiol Spectr. 2023-8-17

[6]
A Unique Sequence Is Essential for Efficient Multidrug Efflux Function of the MtrD Protein of .

mBio. 2021-8-31

[7]
Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors.

Acc Chem Res. 2021-2-16

[8]
Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies?

Microbiology (Reading). 2023-3

[9]
Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance.

PLoS Pathog. 2019-12-26

[10]
Bacterial multidrug efflux transporters.

Annu Rev Biophys. 2014

引用本文的文献

[1]
Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66.

Microorganisms. 2025-6-29

[2]
Structural and functional analysis of the MmpS5L5 efflux pump presages a pathway to increased bedaquiline resistance.

bioRxiv. 2025-6-24

[3]
Structure and assembly of the MmpL5/MmpS5 efflux transporter from Mycobacterium tuberculosis.

Nat Commun. 2025-5-29

[4]
The carRS-ompV-virK operon of Vibrio cholerae senses antimicrobial peptides and activates the expression of multiple resistance systems.

Sci Rep. 2025-4-21

[5]
Regulation, structure, and activity of the MexXY efflux system.

Antimicrob Agents Chemother. 2025-4-7

[6]
Targeting Acinetobacter baumannii resistance-nodulation-division efflux pump transcriptional regulators to combat antimicrobial resistance.

NPJ Antimicrob Resist. 2025-1-25

[7]
Linking the transcriptome to physiology: response of the proteome of Cupriavidus metallidurans to changing metal availability.

Metallomics. 2024-12-2

本文引用的文献

[1]
Crystal structures of multidrug efflux transporters from suggest details of transport mechanism.

Proc Natl Acad Sci U S A. 2023-7-18

[2]
Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance.

Microbiol Spectr. 2023-8-17

[3]
Cryo-EM Structures of the Klebsiella pneumoniae AcrB Multidrug Efflux Pump.

mBio. 2023-6-27

[4]
Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity.

mBio. 2023-2-28

[5]
Evolution of RND efflux pumps in the development of a successful pathogen.

Drug Resist Updat. 2023-1

[6]
Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump.

Microbiol Spectr. 2022-10-26

[7]
Proton transfer activity of the reconstituted MmpL3 is modulated by substrate mimics and inhibitors.

Proc Natl Acad Sci U S A. 2022-7-26

[8]
Secondary Bacterial Infection and Clinical Characteristics in Patients With COVID-19 Admitted to Two Intensive Care Units of an Academic Hospital in Iran During the First Wave of the Pandemic.

Front Cell Infect Microbiol. 2022

[9]
An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii.

mBio. 2021-2-22

[10]
Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms.

Nat Commun. 2021-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索