IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1290-1302. doi: 10.1109/TBCAS.2017.2717281. Epub 2017 Aug 14.
Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.
神经记录系统的小型化和与低功耗无线技术的集成需要在传输前压缩神经数据。特征提取是一种将数据表示在低维空间中的过程;将其集成到记录芯片中可以是压缩神经数据的有效方法。在本文中,我们提出了一种流型主成分分析算法及其微芯片实现,用于压缩多通道局部场电位 (LFP) 和尖峰数据。该电路采用 65nm CMOS 技术设计,占用硅片面积 0.06mm。在整个实验过程中,该芯片通过将 LFPs 压缩 10 倍,以低至 1%的重建误差和 144nW/通道的功耗为代价;对于尖峰,实现的压缩比为 25,重建误差为 8%,功耗为 3.05W/通道。此外,该算法及其硬件架构可以快速适应非平稳的尖峰活动,从而实现多个通道之间的高效硬件共享,以支持高通道计数记录器。