Suppr超能文献

利用神经元网络模型中的伊辛耦合推断结构连接。

Inferring structural connectivity using Ising couplings in models of neuronal networks.

机构信息

Brain Embodiment Lab, Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.

出版信息

Sci Rep. 2017 Aug 15;7(1):8156. doi: 10.1038/s41598-017-05462-2.

Abstract

Functional connectivity metrics have been widely used to infer the underlying structural connectivity in neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect of indirect interactions and give good results in inferring the true anatomical connections. However, no benchmarking is currently available to assess the performance of Ising couplings against other functional connectivity metrics in the microscopic scale of neuronal networks through a wide set of network conditions and network structures. In this paper, we study the performance of the Ising model couplings to infer the synaptic connectivity in in silico networks of neurons and compare its performance against partial and cross-correlations for different correlation levels, firing rates, network sizes, network densities, and topologies. Our results show that the relative performance amongst the three functional connectivity metrics depends primarily on the network correlation levels. Ising couplings detected the most structural links at very weak network correlation levels, and partial correlations outperformed Ising couplings and cross-correlations at strong correlation levels. The result was consistent across varying firing rates, network sizes, and topologies. The findings of this paper serve as a guide in choosing the right functional connectivity tool to reconstruct the structural connectivity.

摘要

功能连接度量已被广泛用于推断神经元网络中的基础结构连接。最大熵基于伊辛模型已被建议用来扣除间接相互作用的影响,并在推断真实的解剖连接方面取得良好的结果。然而,目前还没有基准来评估伊辛耦合在通过广泛的网络条件和网络结构的神经元网络的微观尺度上对其他功能连接度量的性能。在本文中,我们研究了伊辛模型耦合在神经元的计算机网络中推断突触连接的性能,并将其性能与偏相关和交叉相关进行了比较,以评估不同的相关水平、发放率、网络大小、网络密度和拓扑结构。我们的结果表明,这三种功能连接度量的相对性能主要取决于网络的相关水平。在非常弱的网络相关水平下,伊辛耦合检测到了最多的结构连接,而在强相关水平下,偏相关优于伊辛耦合和交叉相关。这一结果在不同的发放率、网络大小和拓扑结构中是一致的。本文的研究结果为选择正确的功能连接工具来重建结构连接提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d36/5557813/df0fef2ca437/41598_2017_5462_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验