Institute for Advanced Study, Technische Universität München , Lichtenbergstraße 2 a, 85748 Garching, Germany.
Chair for Computation in Engineering, Technische Universität München , D-80333 Munich, Germany.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):29430-29437. doi: 10.1021/acsami.7b08617. Epub 2017 Aug 23.
We present a design rationale for stretchable soft network composites for engineering tissues that predominantly function under high tensile loads. The convergence of 3D-printed fibers selected from a design library and biodegradable interpenetrating polymer networks (IPNs) result in biomimetic tissue engineered constructs (bTECs) with fully tunable properties that can match specific tissue requirements. We present our technology platform using an exemplary soft network composite model that is characterized to be flexible, yet ∼125 times stronger (E = 3.19 MPa) and ∼100 times tougher (W = ∼2000 kJ m) than its hydrogel counterpart.
我们提出了一种用于工程组织的可拉伸软网络复合材料的设计原理,这些组织主要在高拉伸负载下发挥作用。从设计库中选择的 3D 打印纤维与可生物降解的互穿聚合物网络 (IPN) 的融合,产生了具有完全可调特性的仿生组织工程构建体 (bTEC),可以满足特定组织的要求。我们使用一个典型的软网络复合材料模型来展示我们的技术平台,该模型具有柔韧性,但其强度比水凝胶提高了约 125 倍 (E = 3.19 MPa),韧性提高了约 100 倍 (W = ∼2000 kJ m)。