Suppr超能文献

高效引导运动微管沿着非拓扑结构的马达图案。

Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns.

机构信息

B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden , 01069 Dresden, Germany.

Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden, Germany.

出版信息

Nano Lett. 2017 Sep 13;17(9):5699-5705. doi: 10.1021/acs.nanolett.7b02606. Epub 2017 Aug 23.

Abstract

Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.

摘要

分子马达是高效的生物纳米机器,具有广泛应用于纳米技术的潜力。为此,通常将驱动蛋白、动力蛋白或肌球蛋白等马达蛋白在工程环境中进行表面固定,以运输附着在细胞骨架丝上的货物。然而,能够灵活控制丝的运动方向,特别是在平面、非地形表面上,仍然具有挑战性。在这里,我们展示了一种基于紫外激光的烧蚀技术的适用性,该技术可以在 PLL-g-PEG 涂层的聚苯乙烯表面上对不同形状和大小的功能性驱动蛋白-1 马达进行可编程生成高度局部化的图案。可以以高度可重复的方式生成宽度小于 500nm 的直形和弧形马达轨道,并证明其可以可靠地引导滑行微管。尽管依赖于轨道曲率,但微管在轨道上的特征行进长度明显超过了早期的预测。此外,我们通过实验验证了最近通过进化算法设计的复杂驱动蛋白-1 图案的性能,这些图案用于控制大面积基底上微管运动的全局方向性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验