Sensors & Electron Devices Directorate, U.S. Army Research Laboratory , Adelphi, Maryland 20783, United States.
Engineering Physics Division, Physical Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.
Nano Lett. 2017 Oct 11;17(10):5897-5907. doi: 10.1021/acs.nanolett.7b01463. Epub 2017 Sep 12.
The strong in-plane anisotropy of rhenium disulfide (ReS) offers an additional physical parameter that can be tuned for advanced applications such as logic circuits, thin-film polarizers, and polarization-sensitive photodetectors. ReS also presents advantages for optoelectronics, as it is both a direct-gap semiconductor for few-layer thicknesses (unlike MoS or WS) and stable in air (unlike black phosphorus). Raman spectroscopy is one of the most powerful characterization techniques to nondestructively and sensitively probe the fundamental photophysics of a 2D material. Here, we perform a thorough study of the resonant Raman response of the 18 first-order phonons in ReS at various layer thicknesses and crystal orientations. Remarkably, we discover that, as opposed to a general increase in intensity of all of the Raman modes at excitonic transitions, each of the 18 modes behave differently relative to each other as a function of laser excitation, layer thickness, and orientation in a manner that highlights the importance of electron-phonon coupling in ReS. In addition, we correct an unrecognized error in the calculation of the optical interference enhancement of the Raman signal of transition metal dichalcogenides on SiO/Si substrates that has propagated through various reports. For ReS, this correction is critical to properly assessing the resonant Raman behavior. We also implemented a perturbation approach to calculate frequency-dependent Raman intensities based on first-principles and demonstrate that, despite the neglect of excitonic effects, useful trends in the Raman intensities of monolayer and bulk ReS at different laser energies can be accurately captured. Finally, the phonon dispersion calculated from first-principles is used to address the possible origins of unexplained peaks observed in the Raman spectra, such as infrared-active modes, defects, and second-order processes.
二硫化铼 (ReS) 的强面内各向异性提供了一个额外的物理参数,可用于调节逻辑电路、薄膜偏光器和偏振敏感光电探测器等先进应用。对于光电应用来说,ReS 也具有优势,因为它对于少数层厚度是直接带隙半导体(与 MoS 或 WS 不同),并且在空气中稳定(与黑磷不同)。拉曼光谱是最强大的特征分析技术之一,可无损且灵敏地探测二维材料的基本光物理。在这里,我们对 ReS 在各种层厚和晶体取向下的 18 个一阶声子的共振拉曼响应进行了彻底研究。值得注意的是,我们发现,与所有拉曼模式在激子跃迁处的强度普遍增加相反,18 个模式中的每一个相对于其他模式的行为都不同,这突出了电子-声子耦合在 ReS 中的重要性。此外,我们纠正了在 SiO2/Si 衬底上过渡金属二卤化物的拉曼信号的光学干涉增强计算中一个未被认识到的错误,该错误在各种报告中传播。对于 ReS,该修正对于正确评估共振拉曼行为至关重要。我们还实施了一种微扰方法来基于第一性原理计算频率相关的拉曼强度,并证明尽管忽略了激子效应,但可以准确捕捉单层和体 ReS 在不同激光能量下的拉曼强度的有用趋势。最后,从第一性原理计算得出的声子色散用于解决拉曼光谱中观察到的未解释峰(如红外活性模式、缺陷和二阶过程)的可能起源。