Suppr超能文献

从住院记录到监测:利用当地患者资料描述印度韦洛尔的霍乱情况。

From hospitalization records to surveillance: The use of local patient profiles to characterize cholera in Vellore, India.

作者信息

Cruz Melissa S, AlarconFalconi Tania M, Hartwick Meghan A, Venkat Aishwarya, Ehrlich Hanna Y, Anandan Shalini, Ward Honorine D, Veeraraghavan Balaji, Naumova Elena N

机构信息

Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America.

School of Engineering, Tufts University, Medford, Massachusetts, United States of America.

出版信息

PLoS One. 2017 Aug 18;12(8):e0182642. doi: 10.1371/journal.pone.0182642. eCollection 2017.

Abstract

Despite availability of high quality medical records, health care systems often do not have the resources or tools to utilize these data efficiently. Yet, hospital-based, laboratory-confirmed records may pave the way for building reliable surveillance systems capable of monitoring temporal trends of emerging infections. In this communication, we present a new tool to compress and visualize medical records with a local population profile (LPP) approach, which transforms information into statistically comparable patterns. We provide a step-by-step tutorial on how to build, interpret, and expand the use of LPP using hospitalization records of laboratory-confirmed cholera. We abstracted case information from the databases maintained by the Department of Clinical Microbiology at Christian Medical College in Vellore, India. We used a single-year age distribution to construct LPPs for O1, O139, and non O1/O139 serotypes of Vibrio cholerae. Disease counts and hospitalization rates were converted into fitted kernel-based probability densities. We formally compared LPPs with the Kolmogorov-Smirnov test, and created multi-panel visuals to depict temporal trend, age distribution, and hospitalization rates simultaneously. Our first implementation of LPPs revealed information that is typically gathered from surveillance systems such as: i) estimates of the demographic distribution of diseases and identification of a population at risk, ii) changes in the dominant pathogen presence; and iii) trends in disease occurrence. The LPP demonstrated the benefit of increased resolution in pattern detection of disease for different Vibrio cholerae serotypes and two demographic categories by showing patterns and anomalies that would be obscured by traditional methods of analysis and visualization. LPP can be used effectively to compile basic patient information such as age, sex, diagnosis, location, and time into compact visuals. Future development of the proposed approach will allow public health researchers and practitioners to broadly utilize and efficiently compress large volumes of medical records without loss of information.

摘要

尽管有高质量的医疗记录,但医疗保健系统往往没有资源或工具来有效利用这些数据。然而,基于医院的、实验室确诊的记录可能为建立能够监测新出现感染的时间趋势的可靠监测系统铺平道路。在本通讯中,我们提出了一种新工具,通过本地人口概况(LPP)方法来压缩和可视化医疗记录,该方法将信息转化为具有统计可比性的模式。我们提供了一个逐步教程,介绍如何使用实验室确诊霍乱的住院记录来构建、解释和扩展LPP的使用。我们从印度韦洛尔基督教医学院临床微生物学系维护的数据库中提取了病例信息。我们使用单一年龄分布来构建霍乱弧菌O1、O139和非O1/O139血清型的LPP。疾病计数和住院率被转换为基于拟合核的概率密度。我们使用柯尔莫哥洛夫-斯米尔诺夫检验对LPP进行了正式比较,并创建了多面板可视化图,以同时描绘时间趋势、年龄分布和住院率。我们对LPP的首次应用揭示了通常从监测系统收集的信息,例如:i)疾病人口分布的估计和高危人群的识别;ii)主要病原体存在情况的变化;以及iii)疾病发生趋势。LPP通过展示传统分析和可视化方法会掩盖的模式和异常情况,证明了在不同霍乱弧菌血清型和两个人口类别疾病模式检测中提高分辨率的好处。LPP可以有效地将年龄、性别、诊断、地点和时间等基本患者信息编译成紧凑的可视化图。所提出方法的未来发展将使公共卫生研究人员和从业者能够广泛利用并有效压缩大量医疗记录而不丢失信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebe8/5562306/9ca1122471cf/pone.0182642.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验