Suppr超能文献

非线性贝叶斯滤波与学习:感知的神经动力学。

Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

机构信息

Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland.

Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland.

出版信息

Sci Rep. 2017 Aug 18;7(1):8722. doi: 10.1038/s41598-017-06519-y.

Abstract

The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

摘要

基于感觉输入对动态隐藏特征(如猎物位置)进行稳健估计是感知的标志之一。这种动态估计可以通过非线性贝叶斯滤波理论进行严格表述。最近的实验和行为研究表明,动物在许多任务中的表现与这种贝叶斯统计解释一致。然而,目前尚不清楚如何在满足某些生物合理性最小约束的神经元网络中有效地实现非线性贝叶斯滤波器。在这里,我们提出了神经粒子滤波器(NPF),这是一种基于采样的非线性贝叶斯滤波器,它不依赖于重要性权重。我们表明,这种滤波器可以被解释为接收来自感觉神经元的前馈输入的递归连接基于速率的神经网络的神经元动力学。此外,它还捕获了对感知至关重要的时间和多感觉整合特性,并且允许使用最大似然方法进行在线参数学习。NPF 有望避免“维度诅咒”,并且我们数值证明了它在更高维度和粒子数量有限时比加权粒子滤波器性能更好的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0779/5562918/3a06cd3ae758/41598_2017_6519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验