Suppr超能文献

利用神经元惊讶实现快速规则切换适应。

Fast adaptation to rule switching using neuronal surprise.

机构信息

School of Computer and Communication Sciences and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

PLoS Comput Biol. 2024 Feb 20;20(2):e1011839. doi: 10.1371/journal.pcbi.1011839. eCollection 2024 Feb.

Abstract

In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signal is extracted from an increase in neural activity after an imbalance of excitation and inhibition. The surprise signal modulates synaptic plasticity via a three-factor learning rule which increases plasticity at moments of surprise. The surprise signal remains small when transitions between sensory events follow a previously learned rule but increases immediately after rule switching. In a spiking network with several modules, previously learned rules are protected against overwriting, as long as the number of modules is larger than the total number of rules-making a step towards solving the stability-plasticity dilemma in neuroscience. Our model relates the subjective notion of surprise to specific predictions on the circuit level.

摘要

在人类和动物中,惊讶是对意外事件的生理反应,但惊讶如何与神经元活动的合理模型联系起来,是一个悬而未决的问题。我们提出了一个自监督的尖峰神经网络模型,其中惊讶信号是从兴奋和抑制失衡后神经活动的增加中提取出来的。惊讶信号通过三因素学习规则来调节突触可塑性,该规则在惊讶时刻增加可塑性。当感觉事件之间的转换遵循先前学习的规则时,惊讶信号保持较小,但在规则切换后立即增加。在具有多个模块的尖峰网络中,只要模块的数量大于规则的总数(这是朝着解决神经科学中的稳定性-可塑性困境迈出的一步),先前学习的规则就不会被覆盖。我们的模型将惊讶的主观概念与电路层面的具体预测联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da60/10906910/ca5c7fc38ba4/pcbi.1011839.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验