Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany.
Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany.
Molecules. 2018 Jul 9;23(7):1669. doi: 10.3390/molecules23071669.
[FeFe]-hydrogenases efficiently catalyzes hydrogen conversion at a unique [4Fe⁻4S]-[FeFe] cofactor, the so-called H-cluster. The catalytic reaction occurs at the diiron site, while the [4Fe⁻4S] cluster functions as a redox shuttle. In the oxidized resting state (Hox), the iron ions of the diiron site bind one cyanide (CN−) and carbon monoxide (CO) ligand each and a third carbonyl can be found in the Fe⁻Fe bridging position (µCO). In the presence of exogenous CO, A fourth CO ligand binds at the diiron site to form the oxidized, CO-inhibited H-cluster (Hox-CO). We investigated the reduced, CO-inhibited H-cluster (Hred´-CO) in this work. The stretching vibrations of the diatomic ligands were monitored by attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Density functional theory (DFT) at the TPSSh/TZVP level was employed to analyze the cofactor geometry, as well as the redox and protonation state of the H-cluster. Selective 13CO isotope editing, spectro-electrochemistry, and correlation analysis of IR data identified a one-electron reduced, protonated [4Fe⁻4S] cluster and an apical CN− ligand at the diiron site in Hred´-CO. The reduced, CO-inhibited H-cluster forms independently of the sequence of CO binding and cofactor reduction, which implies that the ligand rearrangement at the diiron site upon CO inhibition is independent of the redox and protonation state of the [4Fe⁻4S] cluster. The relation of coordination dynamics to cofactor redox and protonation changes in hydrogen conversion catalysis and inhibition is discussed.
[FeFe]-氢化酶在独特的 [4Fe⁻4S]-[FeFe]辅助因子(即所谓的 H 簇)的作用下高效催化氢气转化。催化反应发生在二铁位点,而 [4Fe⁻4S]簇作为氧化还原穿梭体发挥作用。在氧化的静息态(Hox)中,二铁位点的铁离子分别结合一个氰化物(CN−)和一氧化碳(CO)配体,在 Fe⁻Fe 桥接位置(µCO)可以找到第三个羰基。在存在外源性 CO 的情况下,第四个 CO 配体在二铁位点结合,形成氧化的、CO 抑制的 H 簇(Hox-CO)。在这项工作中,我们研究了还原的、CO 抑制的 H 簇(Hred´-CO)。通过衰减全反射傅里叶变换红外光谱(ATR FTIR)监测双原子配体的伸缩振动。采用密度泛函理论(DFT)在 TPSSh/TZVP 水平上分析辅助因子的几何形状以及 H 簇的氧化还原和质子化状态。选择性 13CO 同位素编辑、光谱电化学和 IR 数据的相关分析确定了在 Hred´-CO 中,一个电子还原、质子化的 [4Fe⁻4S]簇和二铁位点的顶端 CN−配体。还原的、CO 抑制的 H 簇的形成独立于 CO 结合和辅助因子还原的顺序,这意味着 CO 抑制时二铁位点的配体重排独立于 [4Fe⁻4S]簇的氧化还原和质子化状态。讨论了配位动力学与氢转化催化和抑制中辅助因子氧化还原和质子化变化的关系。