Manceur Aziza P, Kim Howard, Misic Vanja, Andreev Nadejda, Dorion-Thibaudeau July, Lanthier Stéphane, Bernier Alice, Tremblay Sonia, Gélinas Anne-Marie, Broussau Sophie, Gilbert Rénald, Ansorge Sven
1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada.
2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada .
Hum Gene Ther Methods. 2017 Dec;28(6):330-339. doi: 10.1089/hgtb.2017.086. Epub 2017 Nov 21.
Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 10 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1-3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 10 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 10 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.
慢病毒载体(LV)是基因和细胞治疗应用的关键工具。生产足够数量用于临床应用的这些载体仍然是一个障碍,促使该领域开发有利于大规模生产的悬浮培养工艺。本研究描述了一种使用稳定诱导型生产细胞系的LV生产策略。所采用的HEK293细胞系在悬浮培养中生长,因此具有直接的可扩展性,并且在未经优化的情况下可产生10转导单位(TU)/mL范围内表达绿色荧光蛋白(GFP)的慢病毒载体。名为克隆92的稳定生产细胞系是通过用编码转基因GFP的质粒对包装细胞系进行稳定转染而获得的。该包装细胞系在用香豆酸和强力霉素诱导后表达产生LV所需的所有其他必要成分。首先,该研究表明使用克隆92生产LV可从20 mL摇瓶扩大到3 L生物反应器。接下来,开发了两种策略,用于在1 - 3 L生物反应器中使用声学细胞过滤技术以灌注模式高产生产LV。第一种方法使用基础商业培养基,并在诱导前和诱导后均采用灌注模式以增加细胞密度和LV回收率。第二种方法使用强化培养基配方以在分批模式下达到诱导所需的目标细胞密度,然后在诱导后采用灌注模式。使用这些基于灌注的策略,滴度提高到了3.2×10 TU/mL。结果,与分批模式相比,累积功能性LV滴度提高了高达15倍,生物反应器培养物的累积总产量达到8×10 TU/L。这种方法易于进行大规模生产和商业化制造。