Sobe Richard C, Bond Whitney G, Wotanis Caitlin K, Zayner Josiah P, Burriss Marybeth A, Fernandez Nicolas, Bruger Eric L, Waters Christopher M, Neufeld Howard S, Karatan Ece
From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and.
the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824.
J Biol Chem. 2017 Oct 13;292(41):17025-17036. doi: 10.1074/jbc.M117.801068. Epub 2017 Aug 21.
The aquatic bacterium and human intestinal pathogen, , senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress biofilm formation, respectively. These effects are relevant for understanding pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3'-5') cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA. However, the levels of spermidine required to inhibit biofilm formation through this pathway are unlikely to be encountered by in aquatic reservoirs or within the human host during infection. We therefore hypothesized that other polyamines in the gastrointestinal tract may control biofilm formation at physiological levels. The tetramine spermine has been reported to be present at nearly 50 μm concentrations in the intestinal lumen. Here, we report that spermine acts as an exogenous cue that inhibits biofilm formation through the NspS-MbaA signaling system. We found that this effect probably occurs through a direct interaction of spermine with NspS, as purified NspS protein could bind spermine Spermine also inhibited biofilm formation by altering the transcription of the genes involved in biofilm matrix production. Global c-di-GMP levels were unaffected by spermine supplementation, suggesting that biofilm formation may be regulated by variations in local rather than global c-di-GMP pools. Finally, we propose a model illustrating how the NspS-MbaA signaling system may communicate exogenous polyamine content to the cell to control biofilm formation in the aquatic environment and within the human intestine.
水生细菌兼人类肠道病原体[细菌名称未给出]能感知并响应多种特定环境线索来调节生物膜形成。具体而言,多胺亚精胺和精胺分别增强和抑制[细菌名称未给出]生物膜形成。这些作用对于理解[细菌名称未给出]的致病性具有重要意义,且是通过周质结合蛋白NspS和跨膜双(3'-5')环二鸟苷单磷酸(c-di-GMP)磷酸二酯酶MbaA介导的。然而,在水生环境或感染期间的人类宿主体内,[细菌名称未给出]不太可能遇到通过该途径抑制生物膜形成所需的精胺水平。因此,我们推测胃肠道中的其他多胺可能在生理水平上控制[细菌名称未给出]生物膜形成。据报道,四胺精胺在肠腔中的浓度接近50μm。在此,我们报告精胺作为一种外源性信号,通过NspS-MbaA信号系统抑制[细菌名称未给出]生物膜形成。我们发现这种效应可能是通过精胺与NspS的直接相互作用发生的,因为纯化的NspS蛋白可以结合精胺。精胺还通过改变参与生物膜基质产生的[细菌名称未给出]基因的转录来抑制生物膜形成。补充精胺对全局c-di-GMP水平没有影响,这表明生物膜形成可能是由局部而非全局c-di-GMP库的变化来调节的。最后,我们提出了一个模型,说明NspS-MbaA信号系统如何将外源性多胺含量传递给细胞,以控制水生环境和人类肠道内的生物膜形成。