Department of Biology, Appalachian State University, Boone, NC, USA.
Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA.
Microbiology (Reading). 2021 Mar;167(3). doi: 10.1099/mic.0.001023. Epub 2021 Jan 27.
Biofilm formation in the human intestinal pathogen is in part regulated by norspermidine, spermidine and spermine. senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.
人肠道病原体 中的生物膜形成部分受 nor 精胺、精胺和精脒调控。 通过由周质蛋白 NspS 和整合膜 c-di-GMP 磷酸二酯酶 MbaA 组成的信号通路感知这些多胺。NspS 和 MbaA 属于一类新提出的信号系统,由周质配体结合蛋白和含有 GGDEF 和 EAL 结构域的膜结合 c-di-GMP 磷酸二酯酶组成。在这个信号转导途径中,NspS 被假设与周质中的 MbaA 相互作用以调节其磷酸二酯酶活性。多胺与 NspS 的结合可能改变这种相互作用,从而根据多胺的不同激活或抑制生物膜的形成。本研究的目的是确定 NspS 功能的重要氨基酸。我们对 基因进行随机诱变,鉴定出生物膜形成缺陷的突变克隆,确定它们对 nor 精胺的反应性,并将这些残基定位到 NspS 同源模型上。单个突变体聚集在 NspS 模型的两个叶上,但大多数突变体位于一个似乎在 nor 精胺结合时更具移动性的单个叶上。我们还鉴定了假定配体结合位点中的残基,这些残基可能对 nor 精胺结合和与 MbaA 的相互作用很重要。最终,我们的结果为 中的这个新信号通路提供了新的见解,并强调了参与运输和信号转导的周质结合蛋白之间的差异。