Suppr超能文献

一锅水热原位生长 BiVO/Ag/rGO 杂化结构用于太阳能水分解和环境修复。

One-Pot in Situ Hydrothermal Growth of BiVO/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation.

机构信息

Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea.

School of Chemical Sciences, Solapur University, Solapur, MS, India.

出版信息

Sci Rep. 2017 Aug 21;7(1):8404. doi: 10.1038/s41598-017-08912-z.

Abstract

BiVO is ubiquitously known for its potential use as photoanode for PEC-WS due to its well-suited band structure; nevertheless, it suffers from the major drawback of a slow electron hole separation and transportation. We have demonstrated the one-pot synthesis of BiVO/Ag/rGO hybrid photoanodes on a fluorine-doped tin oxide (FTO)-coated glass substrate using a facile and cost-effective hydrothermal method. The structural, morphological, and optical properties were extensively examined, confirming the formation of hybrid heterostructures. Ternary BiVO/Ag/rGO hybrid photoanode electrode showed enhanced PEC performance with photocurrent densities (J ) of ~2.25 and 5 mA/cm for the water and sulfate oxidation, respectively. In addition, the BiVO/Ag/rGO hybrid photoanode can convert up to 3.5% of the illuminating light into photocurrent, and exhibits a 0.9% solar-to-hydrogen conversion efficiency. Similarly, the photocatalytic methylene blue (MB) degradation afforded the highest degradation rate constant value (k = 1.03 × 10 min) for the BiVO/Ag/rGO hybrid sample. It is noteworthy that the PEC/photocatalytic performance of BiVO/Ag/rGO hybrid architectures is markedly more significant than that of the pristine BiVO sample. The enhanced PEC/photocatalytic performance of the synthesized BiVO/Ag/rGO hybrid sample can be attributed to the combined effects of strong visible light absorption, improved charge separation-transportation and excellent surface properties.

摘要

BIVO 由于其适宜的能带结构而被广泛认为是 PEC-WS 的光阳极的潜在用途;然而,它存在电子空穴分离和传输速度慢的主要缺点。我们已经在掺氟氧化锡(FTO)涂覆的玻璃基底上通过简便且具有成本效益的水热法证明了 BiVO/Ag/rGO 杂化光阳极的一锅合成。广泛研究了结构、形态和光学性质,证实了杂化异质结构的形成。三元 BiVO/Ag/rGO 杂化光阳极电极表现出增强的 PEC 性能,水和硫酸盐氧化的光电流密度(J)分别约为 2.25 和 5 mA/cm。此外,BiVO/Ag/rGO 杂化光阳极可以将高达 3.5%的入射光转化为光电流,并表现出 0.9%的太阳能到氢气的转换效率。同样,对于 BiVO/Ag/rGO 杂化样品,光催化亚甲基蓝(MB)降解提供了最高的降解速率常数值(k=1.03×10-2 min)。值得注意的是,PEC/光催化性能BiVO/Ag/rGO 杂化结构明显优于原始 BiVO 样品。合成的 BiVO/Ag/rGO 杂化样品增强的 PEC/光催化性能可归因于强可见光吸收、改善的电荷分离-传输和优异的表面性能的综合影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5471/5566408/c3031c22c324/41598_2017_8912_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验