Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea.
School of Chemical Sciences, Solapur University, Solapur, MS, India.
Sci Rep. 2017 Aug 21;7(1):8404. doi: 10.1038/s41598-017-08912-z.
BiVO is ubiquitously known for its potential use as photoanode for PEC-WS due to its well-suited band structure; nevertheless, it suffers from the major drawback of a slow electron hole separation and transportation. We have demonstrated the one-pot synthesis of BiVO/Ag/rGO hybrid photoanodes on a fluorine-doped tin oxide (FTO)-coated glass substrate using a facile and cost-effective hydrothermal method. The structural, morphological, and optical properties were extensively examined, confirming the formation of hybrid heterostructures. Ternary BiVO/Ag/rGO hybrid photoanode electrode showed enhanced PEC performance with photocurrent densities (J ) of ~2.25 and 5 mA/cm for the water and sulfate oxidation, respectively. In addition, the BiVO/Ag/rGO hybrid photoanode can convert up to 3.5% of the illuminating light into photocurrent, and exhibits a 0.9% solar-to-hydrogen conversion efficiency. Similarly, the photocatalytic methylene blue (MB) degradation afforded the highest degradation rate constant value (k = 1.03 × 10 min) for the BiVO/Ag/rGO hybrid sample. It is noteworthy that the PEC/photocatalytic performance of BiVO/Ag/rGO hybrid architectures is markedly more significant than that of the pristine BiVO sample. The enhanced PEC/photocatalytic performance of the synthesized BiVO/Ag/rGO hybrid sample can be attributed to the combined effects of strong visible light absorption, improved charge separation-transportation and excellent surface properties.
BIVO 由于其适宜的能带结构而被广泛认为是 PEC-WS 的光阳极的潜在用途;然而,它存在电子空穴分离和传输速度慢的主要缺点。我们已经在掺氟氧化锡(FTO)涂覆的玻璃基底上通过简便且具有成本效益的水热法证明了 BiVO/Ag/rGO 杂化光阳极的一锅合成。广泛研究了结构、形态和光学性质,证实了杂化异质结构的形成。三元 BiVO/Ag/rGO 杂化光阳极电极表现出增强的 PEC 性能,水和硫酸盐氧化的光电流密度(J)分别约为 2.25 和 5 mA/cm。此外,BiVO/Ag/rGO 杂化光阳极可以将高达 3.5%的入射光转化为光电流,并表现出 0.9%的太阳能到氢气的转换效率。同样,对于 BiVO/Ag/rGO 杂化样品,光催化亚甲基蓝(MB)降解提供了最高的降解速率常数值(k=1.03×10-2 min)。值得注意的是,PEC/光催化性能BiVO/Ag/rGO 杂化结构明显优于原始 BiVO 样品。合成的 BiVO/Ag/rGO 杂化样品增强的 PEC/光催化性能可归因于强可见光吸收、改善的电荷分离-传输和优异的表面性能的综合影响。