Department of Chemistry, Columbia University , New York, New York 10027, United States.
Laboratoire MOLTECH, CNRS UMR 6200, Université d'Angers , 49045 Angers, France.
J Am Chem Soc. 2017 Aug 30;139(34):11718-11721. doi: 10.1021/jacs.7b07279. Epub 2017 Aug 22.
Here we disclose a simple route to nanoscopic 2D woven structures reminiscent of the methods used to produce macroscopic textiles. We find that the same principles used in macroscopic weaving can be applied on the nanoscale to create two-dimensional molecular cloth from polymeric strands, a molecular thread. The molecular thread is composed of CoSe(PEt)L superatoms that are bridged with L = benzene bis-1,4-isonitrile to form polymer strands. As the superatoms that make up the polymer chain are electrochemically oxidized, they are electrostatically templated by a nanoscale anion, the tetragonal Lindqvist polyoxometalate MoO. The tetragonal symmetry of the dianionic template creates a nanoscale version of the box weave. The crossing points in the weave feature π-stacking of the bridging linker. By examining the steps in the weaving process with single crystal X-ray diffraction, we find that the degree of polymerization at the crossing points is crucial in the cloth formation. 2D nanoscale cloth will provide access to a new generation of smart, multifunctional materials, coatings, and surfaces.
在这里,我们揭示了一种将医学专业学术文献翻译为简体中文的方法。我们发现,在宏观编织中使用的相同原理可以应用于纳米尺度,从而从聚合物链(分子线)中创建二维分子布。分子线由 CoSe(PEt)L 超原子组成,这些超原子通过 L = 苯二亚甲基-1,4-二异腈桥接,形成聚合物链。当构成聚合物链的超原子被电化学氧化时,它们会被纳米级阴离子,四方 Lindqvist 多金属氧酸盐 MoO 静电模板化。二阴离子模板的四方对称性创建了一种盒式编织的纳米级版本。编织中的交叉点具有桥接配体的π堆积。通过使用单晶 X 射线衍射检查编织过程中的步骤,我们发现交叉点处的聚合度在布的形成中至关重要。二维纳米级布将为新一代智能、多功能材料、涂层和表面提供途径。