Suppr超能文献

用于传染病监测与建模的大数据

Big Data for Infectious Disease Surveillance and Modeling.

作者信息

Bansal Shweta, Chowell Gerardo, Simonsen Lone, Vespignani Alessandro, Viboud Cécile

机构信息

Fogarty International Center, National Institutes of Health, Bethesda, Maryland.

Department of Biology, Georgetown University, Washington D.C.

出版信息

J Infect Dis. 2016 Dec 1;214(suppl_4):S375-S379. doi: 10.1093/infdis/jiw400.

Abstract

We devote a special issue of the Journal of Infectious Diseases to review the recent advances of big data in strengthening disease surveillance, monitoring medical adverse events, informing transmission models, and tracking patient sentiments and mobility. We consider a broad definition of big data for public health, one encompassing patient information gathered from high-volume electronic health records and participatory surveillance systems, as well as mining of digital traces such as social media, Internet searches, and cell-phone logs. We introduce nine independent contributions to this special issue and highlight several cross-cutting areas that require further research, including representativeness, biases, volatility, and validation, and the need for robust statistical and hypotheses-driven analyses. Overall, we are optimistic that the big-data revolution will vastly improve the granularity and timeliness of available epidemiological information, with hybrid systems augmenting rather than supplanting traditional surveillance systems, and better prospects for accurate infectious diseases models and forecasts.

摘要

我们在《传染病杂志》特刊中回顾大数据在加强疾病监测、监测医疗不良事件、为传播模型提供信息以及追踪患者情绪和流动性方面的最新进展。我们对公共卫生领域的大数据采用广义定义,涵盖从大量电子健康记录和参与性监测系统收集的患者信息,以及对社交媒体、互联网搜索和手机日志等数字痕迹的挖掘。我们介绍了本期特刊的九篇独立投稿,并强调了几个需要进一步研究的交叉领域,包括代表性、偏差、波动性和验证,以及进行稳健的统计和假设驱动分析的必要性。总体而言,我们乐观地认为,大数据革命将极大地提高现有流行病学信息的粒度和及时性,混合系统将增强而非取代传统监测系统,并且准确的传染病模型和预测的前景更好。

相似文献

1
Big Data for Infectious Disease Surveillance and Modeling.用于传染病监测与建模的大数据
J Infect Dis. 2016 Dec 1;214(suppl_4):S375-S379. doi: 10.1093/infdis/jiw400.
6
Social Media- and Internet-Based Disease Surveillance for Public Health.社交媒体和互联网的公共卫生疾病监测。
Annu Rev Public Health. 2020 Apr 2;41:101-118. doi: 10.1146/annurev-publhealth-040119-094402. Epub 2020 Jan 6.
8
Computational approaches to influenza surveillance: beyond timeliness.流感监测的计算方法:超越及时性
Cell Host Microbe. 2015 Mar 11;17(3):275-278. doi: 10.1016/j.chom.2015.02.004.
9
Digital surveillance for enhanced detection and response to outbreaks.用于加强疫情检测与应对的数字监测。
Lancet Infect Dis. 2014 Nov;14(11):1035-1037. doi: 10.1016/S1473-3099(14)70953-3. Epub 2014 Oct 19.

引用本文的文献

本文引用的文献

8
Participatory Syndromic Surveillance of Influenza in Europe.欧洲流感参与式监测。
J Infect Dis. 2016 Dec 1;214(suppl_4):S386-S392. doi: 10.1093/infdis/jiw280.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验