Suppr超能文献

epiDMS:基于疫情传播模拟集合进行决策的数据管理与分析

epiDMS: Data Management and Analytics for Decision-Making From Epidemic Spread Simulation Ensembles.

作者信息

Liu Sicong, Poccia Silvestro, Candan K Selçuk, Chowell Gerardo, Sapino Maria Luisa

机构信息

School of Informatics, and Decision Systems Engineering, Arizona State University, Tempe.

Computer Science Department, University of Torino, Italy.

出版信息

J Infect Dis. 2016 Dec 1;214(suppl_4):S427-S432. doi: 10.1093/infdis/jiw305.

Abstract

BACKGROUND

Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions.

METHODS

We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic.

RESULTS AND CONCLUSIONS

epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact.

摘要

背景

经过精心校准的大规模疫情传播计算模型是在疫情紧急情况下支持决策过程的有力工具。疫情模型正越来越多地用于预测不同空间尺度上疫情的时空发展,并评估不同干预策略可能产生的影响。然而,大规模计算模型产生的模拟集合的管理和分析带来了挑战,特别是在处理多个相互依赖的参数时,这些参数跨越多个层次和地理空间框架,受到以不同分辨率运行的复杂动态过程的影响。

方法

我们通过实例描述并说明了一种新型的疫情模拟数据管理系统epiDMS,该系统旨在应对在疫情发展过程中以可扩展方式生成、搜索、可视化和分析大量疫情模拟集合及观测数据时出现的挑战。

结果与结论

epiDMS是一个公开可用的系统,有助于管理和分析大型疫情模拟集合。epiDMS旨在通过提供具有重大经济和健康影响的关键服务,填补医疗紧急情况决策中的一个重要空白。

相似文献

3
On the use of human mobility proxies for modeling epidemics.利用人类移动代理进行传染病建模。
PLoS Comput Biol. 2014 Jul 10;10(7):e1003716. doi: 10.1371/journal.pcbi.1003716. eCollection 2014 Jul.
7
Epidemic spreading on interconnected networks.传染病在互联网络上的传播。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026106. doi: 10.1103/PhysRevE.86.026106. Epub 2012 Aug 10.
10
Mathematical models to characterize early epidemic growth: A review.用于描述早期疫情增长的数学模型:综述
Phys Life Rev. 2016 Sep;18:66-97. doi: 10.1016/j.plrev.2016.07.005. Epub 2016 Jul 11.

本文引用的文献

3
The global transmission and control of influenza.流感的全球传播与控制。
PLoS One. 2011 May 6;6(5):e19515. doi: 10.1371/journal.pone.0019515.
8
Potential for a global dynamic of Influenza A (H1N1).甲型H1N1流感全球动态的可能性。
BMC Infect Dis. 2009 Aug 12;9:129. doi: 10.1186/1471-2334-9-129.
9
Closure of schools during an influenza pandemic.流感大流行期间学校停课。
Lancet Infect Dis. 2009 Aug;9(8):473-81. doi: 10.1016/S1473-3099(09)70176-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验