Suppr超能文献

重新审视测量城市卫生服务潜在空间可达性的方法:距离类型和聚合误差问题。

The approaches to measuring the potential spatial access to urban health services revisited: distance types and aggregation-error issues.

机构信息

Centre Urbanisation Culture Société, Institut National de la Recherche Scientifique, 385 Sherbrooke Street East, Montréal, QC, H2X 1E3, Canada.

Department of Social and Preventive Medicine, Faculty of Medicine, University of Montréal, P.O. Box 6128, Downtown Station, Montréal, QC, H3C 3J7, Canada.

出版信息

Int J Health Geogr. 2017 Aug 23;16(1):32. doi: 10.1186/s12942-017-0105-9.

Abstract

BACKGROUND

The potential spatial access to urban health services is an important issue in health geography, spatial epidemiology and public health. Computing geographical accessibility measures for residential areas (e.g. census tracts) depends on a type of distance, a method of aggregation, and a measure of accessibility. The aim of this paper is to compare discrepancies in results for the geographical accessibility of health services computed using six distance types (Euclidean and Manhattan distances; shortest network time on foot, by bicycle, by public transit, and by car), four aggregation methods, and fourteen accessibility measures.

METHODS

To explore variations in results according to the six types of distance and the aggregation methods, correlation analyses are performed. To measure how the assessment of potential spatial access varies according to three parameters (type of distance, aggregation method, and accessibility measure), sensitivity analysis (SA) and uncertainty analysis (UA) are conducted.

RESULTS

First, independently of the type of distance used except for shortest network time by public transit, the results are globally similar (correlation >0.90). However, important local variations in correlation between Cartesian and the four shortest network time distances are observed, notably in suburban areas where Cartesian distances are less precise. Second, the choice of the aggregation method is also important: compared with the most accurate aggregation method, accessibility measures computed from census tract centroids, though not inaccurate, yield important measurement errors for 10% of census tracts. Third, the SA results show that the evaluation of potential geographic access may vary a great deal depending on the accessibility measure and, to a lesser degree, the type of distance and aggregation method. Fourth, the UA results clearly indicate areas of strong uncertainty in suburban areas, whereas central neighbourhoods show lower levels of uncertainty.

CONCLUSION

In order to accurately assess potential geographic access to health services in urban areas, it is particularly important to choose a precise type of distance and aggregation method. Then, depending on the research objectives, the choices of the type of network distance (according to the mode of transportation) and of a number of accessibility measures should be carefully considered and adequately justified.

摘要

背景

城市卫生服务的潜在空间可达性是卫生地理、空间流行病学和公共卫生的一个重要问题。计算居住区域(例如人口普查区)的地理可达性度量值取决于距离类型、聚合方法和可达性度量值。本文的目的是比较使用六种距离类型(欧几里得和曼哈顿距离;步行、骑自行车、公共交通和驾车的最短网络时间)、四种聚合方法和十四种可达性度量值计算卫生服务地理可达性时结果的差异。

方法

为了根据六种距离类型和聚合方法探索结果的变化,进行相关性分析。为了根据三个参数(距离类型、聚合方法和可达性度量值)来衡量潜在空间可达性的评估变化,进行了敏感性分析(SA)和不确定性分析(UA)。

结果

首先,除了最短公共交通网络时间外,无论使用哪种距离类型,结果都非常相似(相关性>0.90)。然而,在笛卡尔和四种最短网络时间距离之间,局部相关性存在重要差异,特别是在郊区,笛卡尔距离不够精确。其次,聚合方法的选择也很重要:与最精确的聚合方法相比,尽管从人口普查区中心计算的可达性度量值并不不准确,但对于 10%的人口普查区,会产生重要的测量误差。第三,SA 结果表明,潜在地理可达性的评估可能会因可达性度量值而有很大差异,在较小程度上也会因距离类型和聚合方法而有很大差异。第四,UA 结果清楚地表明,在郊区存在强烈的不确定性区域,而中心社区的不确定性水平较低。

结论

为了准确评估城市地区卫生服务的潜在地理可达性,选择精确的距离类型和聚合方法尤为重要。然后,根据研究目标,应仔细考虑和充分论证网络距离类型(根据交通方式)和一些可达性度量值的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验