Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel;
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7865-E7874. doi: 10.1073/pnas.1620045114. Epub 2017 Aug 22.
The discovery of physical laws consistent with empirical observations is at the heart of (applied) science and engineering. These laws typically take the form of nonlinear differential equations depending on parameters; dynamical systems theory provides, through the appropriate normal forms, an "intrinsic" prototypical characterization of the types of dynamical regimes accessible to a given model. Using an implementation of data-informed geometry learning, we directly reconstruct the relevant "normal forms": a quantitative mapping from empirical observations to prototypical realizations of the underlying dynamics. Interestingly, the state variables and the parameters of these realizations are inferred from the empirical observations; without prior knowledge or understanding, they parametrize the dynamics intrinsically without explicit reference to fundamental physical quantities.
物理定律与经验观察一致的发现是(应用)科学和工程的核心。这些定律通常采用依赖参数的非线性微分方程的形式;动力系统理论通过适当的规范形式,为给定模型可达到的动力状态类型提供了一种“内在”的原型描述。使用数据启发的几何学习的实现,我们直接重建相关的“规范形式”:从经验观察到基础动力学的原型实现的定量映射。有趣的是,这些实现的状态变量和参数是从经验观察中推断出来的;无需先验知识或理解,它们内在地对动力学进行参数化,而无需明确参考基本物理量。