Suppr超能文献

集成动态模式分解法:在低数据、高噪声情况下通过主动学习与控制进行稳健的稀疏模型发现

Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.

作者信息

Fasel U, Kutz J N, Brunton B W, Brunton S L

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.

Department of Applied Mathematics, University of Washington, Seattle, WA, USA.

出版信息

Proc Math Phys Eng Sci. 2022 Apr;478(2260):20210904. doi: 10.1098/rspa.2021.0904. Epub 2022 Apr 13.

Abstract

Sparse model identification enables the discovery of nonlinear dynamical systems purely from data; however, this approach is sensitive to noise, especially in the low-data limit. In this work, we leverage the statistical approach of bootstrap aggregating (bagging) to robustify the sparse identification of the nonlinear dynamics (SINDy) algorithm. First, an ensemble of SINDy models is identified from subsets of limited and noisy data. The aggregate model statistics are then used to produce inclusion probabilities of the candidate functions, which enables uncertainty quantification and probabilistic forecasts. We apply this ensemble-SINDy (E-SINDy) algorithm to several synthetic and real-world datasets and demonstrate substantial improvements to the accuracy and robustness of model discovery from extremely noisy and limited data. For example, E-SINDy uncovers partial differential equations models from data with more than twice as much measurement noise as has been previously reported. Similarly, E-SINDy learns the Lotka Volterra dynamics from remarkably limited data of yearly lynx and hare pelts collected from 1900 to 1920. E-SINDy is computationally efficient, with similar scaling as standard SINDy. Finally, we show that ensemble statistics from E-SINDy can be exploited for active learning and improved model predictive control.

摘要

稀疏模型识别能够仅从数据中发现非线性动力系统;然而,这种方法对噪声敏感,尤其是在低数据量的情况下。在这项工作中,我们利用自助聚合(装袋)的统计方法来增强非线性动力学(SINDy)算法的稀疏识别。首先,从有限的噪声数据子集中识别出一组SINDy模型。然后,使用聚合模型统计数据来生成候选函数的包含概率,从而实现不确定性量化和概率预测。我们将这种集成SINDy(E-SINDy)算法应用于几个合成数据集和真实世界数据集,并证明从极噪声和有限数据中进行模型发现时,在准确性和鲁棒性方面有显著提高。例如,E-SINDy能从测量噪声比之前报道的多两倍以上的数据中发现偏微分方程模型。同样,E-SINDy能从1900年至1920年收集的极为有限的猞猁和野兔皮张年度数据中学习洛特卡-沃尔泰拉动力学。E-SINDy计算效率高,其规模与标准SINDy类似。最后,我们表明E-SINDy的集成统计数据可用于主动学习和改进模型预测控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de97/9006119/5c42b3b57b2d/rspa20210904f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验