Suppr超能文献

SINDy-PI:一种用于非线性动力学并行隐式稀疏识别的稳健算法。

SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.

作者信息

Kaheman Kadierdan, Kutz J Nathan, Brunton Steven L

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

出版信息

Proc Math Phys Eng Sci. 2020 Oct;476(2242):20200279. doi: 10.1098/rspa.2020.0279. Epub 2020 Oct 7.

Abstract

Accurately modelling the nonlinear dynamics of a system from measurement data is a challenging yet vital topic. The sparse identification of nonlinear dynamics (SINDy) algorithm is one approach to discover dynamical systems models from data. Although extensions have been developed to identify implicit dynamics, or dynamics described by rational functions, these extensions are extremely sensitive to noise. In this work, we develop SINDy-PI (parallel, implicit), a robust variant of the SINDy algorithm to identify implicit dynamics and rational nonlinearities. The SINDy-PI framework includes multiple optimization algorithms and a principled approach to model selection. We demonstrate the ability of this algorithm to learn implicit ordinary and partial differential equations and conservation laws from limited and noisy data. In particular, we show that the proposed approach is several orders of magnitude more noise robust than previous approaches, and may be used to identify a class of ODE and PDE dynamics that were previously unattainable with SINDy, including for the double pendulum dynamics and simplified model for the Belousov-Zhabotinsky (BZ) reaction.

摘要

从测量数据中精确地对系统的非线性动力学进行建模是一个具有挑战性但至关重要的课题。非线性动力学的稀疏识别(SINDy)算法是一种从数据中发现动力学系统模型的方法。尽管已经开发了扩展方法来识别隐式动力学或由有理函数描述的动力学,但这些扩展对噪声极其敏感。在这项工作中,我们开发了SINDy-PI(并行、隐式),这是一种SINDy算法的稳健变体,用于识别隐式动力学和有理非线性。SINDy-PI框架包括多种优化算法和一种有原则的模型选择方法。我们展示了该算法从有限的噪声数据中学习隐式常微分方程和偏微分方程以及守恒律的能力。特别是,我们表明所提出的方法在抗噪声能力上比以前的方法高出几个数量级,并且可用于识别一类以前用SINDy无法实现的常微分方程和偏微分方程动力学,包括双摆动力学和Belousov-Zhabotinsky(BZ)反应的简化模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58eb/7655768/84547035916a/rspa20200279-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验