Suppr超能文献

癌症机构脸书页面上的评论主题演变

Comment Topic Evolution on a Cancer Institution's Facebook Page.

作者信息

Tang Chunlei, Zhou Li, Plasek Joseph, Rozenblum Ronen, Bates David

机构信息

Chunlei Tang, PhD, Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, 1620 Tremont Street BS-3, Boston, MA 02120, USA, Phone: (857) 600-0628, Email:

出版信息

Appl Clin Inform. 2017 Aug 23;8(3):854-865. doi: 10.4338/ACI-2017-04-RA-0055.

Abstract

OBJECTIVES

Our goal was to identify and track the evolution of the topics discussed in free-text comments on a cancer institution's social media page.

METHODS

We utilized the Latent Dirichlet Allocation model to extract ten topics from free-text comments on a cancer research institution's Facebook™ page between January 1, 2009, and June 30, 2014. We calculated Pearson correlation coefficients between the comment categories to demonstrate topic intensity evolution.

RESULTS

A total of 4,335 comments were included in this study, from which ten topics were identified: greetings (17.3%), comments about the cancer institution (16.7%), blessings (10.9%), time (10.7%), treatment (9.3%), expressions of optimism (7.9%), tumor (7.5%), father figure (6.3%), and other family members & friends (8.2%), leaving 5.1% of comments unclassified. The comment distributions reveal an overall increasing trend during the study period. We discovered a strong positive correlation between greetings and other family members & friends (r=0.88; p<0.001), a positive correlation between blessings and the cancer institution (r=0.65; p<0.05), and a negative correlation between blessings and greetings (r=-0.70; p<0.05).

CONCLUSIONS

A cancer institution's social media platform can provide emotional support to patients and family members. Topic analysis may help institutions better identify and support the needs (emotional, instrumental, and social) of their community and influence their social media strategy.

摘要

目的

我们的目标是识别并追踪一家癌症机构社交媒体页面上自由文本评论中所讨论话题的演变。

方法

我们利用潜在狄利克雷分配模型,从2009年1月1日至2014年6月30日期间一家癌症研究机构的Facebook™页面上的自由文本评论中提取了10个话题。我们计算了评论类别之间的皮尔逊相关系数,以展示话题强度的演变。

结果

本研究共纳入4335条评论,从中识别出10个话题:问候(17.3%)、关于癌症机构的评论(16.7%)、祝福(10.9%)、时间(10.7%)、治疗(9.3%)、乐观表达(7.9%)、肿瘤(7.5%)、父亲形象(6.3%)以及其他家庭成员和朋友(8.2%),5.1%的评论未分类。评论分布在研究期间呈现出总体上升趋势。我们发现问候与其他家庭成员和朋友之间存在强正相关(r = 0.88;p < 0.001),祝福与癌症机构之间存在正相关(r = 0.65;p < 0.05),祝福与问候之间存在负相关(r = -0.70;p < 0.05)。

结论

癌症机构的社交媒体平台可为患者及其家属提供情感支持。话题分析可能有助于机构更好地识别并满足其社区的需求(情感、工具性和社会性),并影响其社交媒体策略。

相似文献

1
Comment Topic Evolution on a Cancer Institution's Facebook Page.癌症机构脸书页面上的评论主题演变
Appl Clin Inform. 2017 Aug 23;8(3):854-865. doi: 10.4338/ACI-2017-04-RA-0055.

引用本文的文献

8
Cancer Informatics in 2017: A New Beginning and a Bright Future.2017年的癌症信息学:新的开端与光明的未来。
Yearb Med Inform. 2018 Aug;27(1):223-226. doi: 10.1055/s-0038-1667086. Epub 2018 Aug 29.

本文引用的文献

2
The role of social media around patient experience and engagement.社交媒体在患者体验和参与方面的作用。
BMJ Qual Saf. 2017 Oct;26(10):845-848. doi: 10.1136/bmjqs-2017-006457. Epub 2017 Apr 20.
3
Mining Health Social Media with Sentiment Analysis.运用情感分析挖掘健康社交媒体信息。
J Med Syst. 2016 Nov;40(11):236. doi: 10.1007/s10916-016-0604-4. Epub 2016 Sep 23.
5
On mining latent topics from healthcare chat logs.关于从医疗聊天记录中挖掘潜在主题。
J Biomed Inform. 2016 Jun;61:247-59. doi: 10.1016/j.jbi.2016.04.008. Epub 2016 Apr 28.
10
Twitter and the health reforms in the English National Health Service.推特与英国国民保健制度的改革。
Health Policy. 2013 May;110(2-3):291-7. doi: 10.1016/j.healthpol.2013.02.005. Epub 2013 Mar 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验