Zhao Weizhong, Chen James J, Perkins Roger, Liu Zhichao, Ge Weigong, Ding Yijun, Zou Wen
BMC Bioinformatics. 2015;16 Suppl 13(Suppl 13):S8. doi: 10.1186/1471-2105-16-S13-S8. Epub 2015 Sep 25.
Topic modelling is an active research field in machine learning. While mainly used to build models from unstructured textual data, it offers an effective means of data mining where samples represent documents, and different biological endpoints or omics data represent words. Latent Dirichlet Allocation (LDA) is the most commonly used topic modelling method across a wide number of technical fields. However, model development can be arduous and tedious, and requires burdensome and systematic sensitivity studies in order to find the best set of model parameters. Often, time-consuming subjective evaluations are needed to compare models. Currently, research has yielded no easy way to choose the proper number of topics in a model beyond a major iterative approach.
Based on analysis of variation of statistical perplexity during topic modelling, a heuristic approach is proposed in this study to estimate the most appropriate number of topics. Specifically, the rate of perplexity change (RPC) as a function of numbers of topics is proposed as a suitable selector. We test the stability and effectiveness of the proposed method for three markedly different types of grounded-truth datasets: Salmonella next generation sequencing, pharmacological side effects, and textual abstracts on computational biology and bioinformatics (TCBB) from PubMed.
The proposed RPC-based method is demonstrated to choose the best number of topics in three numerical experiments of widely different data types, and for databases of very different sizes. The work required was markedly less arduous than if full systematic sensitivity studies had been carried out with number of topics as a parameter. We understand that additional investigation is needed to substantiate the method's theoretical basis, and to establish its generalizability in terms of dataset characteristics.
主题建模是机器学习中的一个活跃研究领域。虽然主要用于从非结构化文本数据构建模型,但它提供了一种有效的数据挖掘方法,其中样本代表文档,不同的生物学终点或组学数据代表单词。潜在狄利克雷分配(LDA)是众多技术领域中最常用的主题建模方法。然而,模型开发可能艰巨且繁琐,并且需要进行繁重且系统的敏感性研究以找到最佳的模型参数集。通常,需要进行耗时的主观评估来比较模型。目前,除了主要的迭代方法外,尚无简单的方法来选择模型中合适的主题数量。
基于对主题建模过程中统计困惑度变化的分析,本研究提出了一种启发式方法来估计最合适的主题数量。具体而言,提出将作为主题数量函数的困惑度变化率(RPC)作为合适的选择器。我们针对三种明显不同类型的真实数据集测试了所提出方法的稳定性和有效性:沙门氏菌下一代测序、药物副作用以及来自PubMed的计算生物学和生物信息学(TCBB)文本摘要。
在三个数据类型差异很大且数据库大小差异很大的数值实验中,所提出的基于RPC的方法被证明能够选择最佳的主题数量。与以主题数量为参数进行全面系统的敏感性研究相比,所需的工作量明显更少。我们明白需要进行额外研究以证实该方法的理论基础,并确定其在数据集特征方面的通用性。